Cargando…

Hybrid Machine-Learning-Based Prediction Model for the Peak Dilation Angle of Rock Discontinuities

The peak dilation angle is an important mechanical feature of rock discontinuities, which is significant in assessing the mechanical behaviour of rock masses. Previous studies have shown that the efficiency and accuracy of traditional experimental methods and analytical models in determining the she...

Descripción completa

Detalles Bibliográficos
Autores principales: Xie, Shijie, Yao, Rubing, Yan, Yatao, Lin, Hang, Zhang, Peilei, Chen, Yifan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10573530/
https://www.ncbi.nlm.nih.gov/pubmed/37834523
http://dx.doi.org/10.3390/ma16196387
Descripción
Sumario:The peak dilation angle is an important mechanical feature of rock discontinuities, which is significant in assessing the mechanical behaviour of rock masses. Previous studies have shown that the efficiency and accuracy of traditional experimental methods and analytical models in determining the shear dilation angle are not completely satisfactory. Machine learning methods are popular due to their efficient prediction of outcomes for multiple influencing factors. In this paper, a novel hybrid machine learning model is proposed for predicting the peak dilation angle. The model incorporates support vector regression (SVR) techniques as the primary prediction tools, augmented with the grid search optimization algorithm to enhance prediction performance and optimize hyperparameters. The proposed model was employed on eighty-nine datasets with six input variables encompassing morphology and mechanical property parameters. Comparative analysis is conducted between the proposed model, the original SVR model, and existing analytical models. The results show that the proposed model surpasses both the original SVR model and analytical models, with a coefficient of determination (R(2)) of 0.917 and a mean absolute percentage error (MAPE) of 4.5%. Additionally, the study also reveals that normal stress is the most influential mechanical property parameter affecting the peak dilation angle. Consequently, the proposed model was shown to be effective in predicting the peak dilation angle of rock discontinuities.