Cargando…
Trichinella spiralis-Secreted Products Promote Collagen Capsule Formation through TGF-β1/Smad3 Pathway
Trichinella spiralis (T. spiralis) muscle larvae colonize in the host’s skeletal muscle cells, which are surrounded by collagen capsules. The mechanism underlying muscle stage larva-induced collagen capsule formation remains unknown. To clarify the mechanism, a T. spiralis muscular-infected mouse mo...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10573566/ https://www.ncbi.nlm.nih.gov/pubmed/37834451 http://dx.doi.org/10.3390/ijms241915003 |
Sumario: | Trichinella spiralis (T. spiralis) muscle larvae colonize in the host’s skeletal muscle cells, which are surrounded by collagen capsules. The mechanism underlying muscle stage larva-induced collagen capsule formation remains unknown. To clarify the mechanism, a T. spiralis muscular-infected mouse model was established by a single lateral tail vein injection with 20,000 T. spiralis newborn larvae (NBL). The infected mice were treated with or without SB525334 (TGF-β1 receptor type I inhibitor). Diaphragms were obtained post-infection, and the expression levels of the TGF-β1/Smad3 pathway-related genes and collagen genes (type IV and VI) were observed during the process of collagen capsule formation. The changes in myoblasts under stimulation of the excretory–secretory (ES) products of NBL with or without SB525334 were further investigated. Results showed that the expression levels of type IV collagen gene, type VI collagen gene, Tgfb1, and Smad3 were significantly increased in infected mice muscle cells. The expression levels of all the above genes were enhanced by the products of NBL in myoblast cells. These changes were reversed by co-treatment with SB525334 in vivo and in vitro. In conclusion, the TGF-β1/Smad3 pathway can be activated by T. spiralis infection in muscle cells. The activated TGF-β1/Smad3 pathway can stimulate the secretion of collagens by myocytes and plays a promoting role in the process of collagen capsule formation. The research has the limitation that the protein identification of the products of NBL has yet to be performed. Therefore, the specific components in the T. spiralis ES products that induce collagen synthesis should be further investigated. |
---|