Cargando…

Experimental and Numerical Investigation on Pile Foundation Underpinning Structure System in Urban Overpass

In view of the complexity of the pile foundation underpinning structure system and the stringent requirements of the construction process, this paper briefly describes the necessity of introducing epoxy resin reinforcing adhesive of planting rebar in the design of pile foundation underpinning beam s...

Descripción completa

Detalles Bibliográficos
Autores principales: Yan, Lei, Gou, Xiaoying, Guo, Zhengchao, Zhang, Xin, Jiang, Yu, Ran, Xingwen, Chen, Guanwen, Yue, Kefeng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10573851/
https://www.ncbi.nlm.nih.gov/pubmed/37834711
http://dx.doi.org/10.3390/ma16196576
Descripción
Sumario:In view of the complexity of the pile foundation underpinning structure system and the stringent requirements of the construction process, this paper briefly describes the necessity of introducing epoxy resin reinforcing adhesive of planting rebar in the design of pile foundation underpinning beam structure to improve the mechanical properties of the reinforced beam new and old concrete joint surfaces and proposes a new type of pile foundation replacement beam system construction method by “chiseling + prestressed reinforcement + epoxy resin reinforcing adhesive”. This paper uses an actual pile foundation underpinning project of an urban overpass as a prototype, designs and creates a model structure with a similarity ratio of 1/6, and performs repeated progressive static loading tests to study the load carrying capacity, displacement change, and other properties of the strengthened replacement structure, as well as analyses and distorts the overall working performance and failure mode of them. On this basis, the prototype structure’s finite element analysis model was built, and the finite element analysis results were compared with the test results to obtain the mechanical properties and deformation characters of the actual pile foundation underpinning structure system corresponding to the actual underpinning beam load. This paper’s study can lay the theoretical and experimental foundation for the smooth development of similar projects.