Cargando…
Photovoltaic properties of new solar cell based on ideal cubic NaNbO(3) thin films: a combined experimental and density functional theory study
We explore the photovoltaic properties of a novel homojunction solar cell based on NNO(p)/NNO(n) perovskite by employing a combination of material synthesis, characterization and density functional theory calculations that are novel ideas compared to those previously reported in the literature. The...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10573870/ https://www.ncbi.nlm.nih.gov/pubmed/37842673 http://dx.doi.org/10.1039/d3ra04084d |
_version_ | 1785120561501831168 |
---|---|
author | Bougoffa, Amira Mabrouki, Ala Eddin Trabelsi, Abdessalem Dhahri, Essebti Khirouni, Kamel |
author_facet | Bougoffa, Amira Mabrouki, Ala Eddin Trabelsi, Abdessalem Dhahri, Essebti Khirouni, Kamel |
author_sort | Bougoffa, Amira |
collection | PubMed |
description | We explore the photovoltaic properties of a novel homojunction solar cell based on NNO(p)/NNO(n) perovskite by employing a combination of material synthesis, characterization and density functional theory calculations that are novel ideas compared to those previously reported in the literature. The band structure reveals that NaNbO(3) introduces a n-type semiconductor. Moreover, using DFT calculation, we created n-NNO by a simple substitution in the O site by 4.16% fluorine atoms. Experimental and DFT calculation reveals that NNO perovskite exhibits a direct bandgap of ∼1.6 eV, with a slightly larger two other direct bandgaps of ∼2.13 and 3.24 eV. After extracting the necessary parameters, an electrical modelization of an n-NNO/p-NNO solar cell is performed by Maple software revealed that the cell conversion efficiency can reach 17% which presents a first path to identify a new solar cell based only on perovskite material. |
format | Online Article Text |
id | pubmed-10573870 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-105738702023-10-14 Photovoltaic properties of new solar cell based on ideal cubic NaNbO(3) thin films: a combined experimental and density functional theory study Bougoffa, Amira Mabrouki, Ala Eddin Trabelsi, Abdessalem Dhahri, Essebti Khirouni, Kamel RSC Adv Chemistry We explore the photovoltaic properties of a novel homojunction solar cell based on NNO(p)/NNO(n) perovskite by employing a combination of material synthesis, characterization and density functional theory calculations that are novel ideas compared to those previously reported in the literature. The band structure reveals that NaNbO(3) introduces a n-type semiconductor. Moreover, using DFT calculation, we created n-NNO by a simple substitution in the O site by 4.16% fluorine atoms. Experimental and DFT calculation reveals that NNO perovskite exhibits a direct bandgap of ∼1.6 eV, with a slightly larger two other direct bandgaps of ∼2.13 and 3.24 eV. After extracting the necessary parameters, an electrical modelization of an n-NNO/p-NNO solar cell is performed by Maple software revealed that the cell conversion efficiency can reach 17% which presents a first path to identify a new solar cell based only on perovskite material. The Royal Society of Chemistry 2023-10-13 /pmc/articles/PMC10573870/ /pubmed/37842673 http://dx.doi.org/10.1039/d3ra04084d Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/ |
spellingShingle | Chemistry Bougoffa, Amira Mabrouki, Ala Eddin Trabelsi, Abdessalem Dhahri, Essebti Khirouni, Kamel Photovoltaic properties of new solar cell based on ideal cubic NaNbO(3) thin films: a combined experimental and density functional theory study |
title | Photovoltaic properties of new solar cell based on ideal cubic NaNbO(3) thin films: a combined experimental and density functional theory study |
title_full | Photovoltaic properties of new solar cell based on ideal cubic NaNbO(3) thin films: a combined experimental and density functional theory study |
title_fullStr | Photovoltaic properties of new solar cell based on ideal cubic NaNbO(3) thin films: a combined experimental and density functional theory study |
title_full_unstemmed | Photovoltaic properties of new solar cell based on ideal cubic NaNbO(3) thin films: a combined experimental and density functional theory study |
title_short | Photovoltaic properties of new solar cell based on ideal cubic NaNbO(3) thin films: a combined experimental and density functional theory study |
title_sort | photovoltaic properties of new solar cell based on ideal cubic nanbo(3) thin films: a combined experimental and density functional theory study |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10573870/ https://www.ncbi.nlm.nih.gov/pubmed/37842673 http://dx.doi.org/10.1039/d3ra04084d |
work_keys_str_mv | AT bougoffaamira photovoltaicpropertiesofnewsolarcellbasedonidealcubicnanbo3thinfilmsacombinedexperimentalanddensityfunctionaltheorystudy AT mabroukialaeddin photovoltaicpropertiesofnewsolarcellbasedonidealcubicnanbo3thinfilmsacombinedexperimentalanddensityfunctionaltheorystudy AT trabelsiabdessalem photovoltaicpropertiesofnewsolarcellbasedonidealcubicnanbo3thinfilmsacombinedexperimentalanddensityfunctionaltheorystudy AT dhahriessebti photovoltaicpropertiesofnewsolarcellbasedonidealcubicnanbo3thinfilmsacombinedexperimentalanddensityfunctionaltheorystudy AT khirounikamel photovoltaicpropertiesofnewsolarcellbasedonidealcubicnanbo3thinfilmsacombinedexperimentalanddensityfunctionaltheorystudy |