Cargando…

A Microscale Analysis of Thermal Residual Stresses in Composites with Different Ply Orientations

Composites, such as fiber-reinforced plastics, are produced using layering prepregs with varying ply orientations to achieve enhanced mechanical properties. However, this results in intricate residual stresses, which are influenced by the forming process and ply orientation. In this study, three rep...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Yanfeng, Wu, Qi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10574051/
https://www.ncbi.nlm.nih.gov/pubmed/37834704
http://dx.doi.org/10.3390/ma16196567
_version_ 1785120604857303040
author Wang, Yanfeng
Wu, Qi
author_facet Wang, Yanfeng
Wu, Qi
author_sort Wang, Yanfeng
collection PubMed
description Composites, such as fiber-reinforced plastics, are produced using layering prepregs with varying ply orientations to achieve enhanced mechanical properties. However, this results in intricate residual stresses, which are influenced by the forming process and ply orientation. In this study, three representative microscopic models—featuring discrete fiber and resin—represent unidirectional, cross-ply, and angle-ply laminates. These models underwent simulations under three different cooling histories using the finite element method. The findings suggest that ply orientation does not significantly influence temperature distribution. However, it significantly impacts the von Mises stress in the fiber closest to the interface between two stacked laminae. This differs from the inter-laminar stresses determined with the macroscopic lamination model. Apart from the free edge, which exhibits a complex stress distribution, the von Mises stress within a unit cell displays a recurring pattern. The magnitude of the von Mises stress decreases as the ply orientation angle increases and shifts when a temperature gradient is present throughout the composite’s thickness. This study provides valuable insights into the mechanics of residual stresses at the microscopic level and highlights potential defect areas influenced by these stresses.
format Online
Article
Text
id pubmed-10574051
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-105740512023-10-14 A Microscale Analysis of Thermal Residual Stresses in Composites with Different Ply Orientations Wang, Yanfeng Wu, Qi Materials (Basel) Article Composites, such as fiber-reinforced plastics, are produced using layering prepregs with varying ply orientations to achieve enhanced mechanical properties. However, this results in intricate residual stresses, which are influenced by the forming process and ply orientation. In this study, three representative microscopic models—featuring discrete fiber and resin—represent unidirectional, cross-ply, and angle-ply laminates. These models underwent simulations under three different cooling histories using the finite element method. The findings suggest that ply orientation does not significantly influence temperature distribution. However, it significantly impacts the von Mises stress in the fiber closest to the interface between two stacked laminae. This differs from the inter-laminar stresses determined with the macroscopic lamination model. Apart from the free edge, which exhibits a complex stress distribution, the von Mises stress within a unit cell displays a recurring pattern. The magnitude of the von Mises stress decreases as the ply orientation angle increases and shifts when a temperature gradient is present throughout the composite’s thickness. This study provides valuable insights into the mechanics of residual stresses at the microscopic level and highlights potential defect areas influenced by these stresses. MDPI 2023-10-06 /pmc/articles/PMC10574051/ /pubmed/37834704 http://dx.doi.org/10.3390/ma16196567 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Wang, Yanfeng
Wu, Qi
A Microscale Analysis of Thermal Residual Stresses in Composites with Different Ply Orientations
title A Microscale Analysis of Thermal Residual Stresses in Composites with Different Ply Orientations
title_full A Microscale Analysis of Thermal Residual Stresses in Composites with Different Ply Orientations
title_fullStr A Microscale Analysis of Thermal Residual Stresses in Composites with Different Ply Orientations
title_full_unstemmed A Microscale Analysis of Thermal Residual Stresses in Composites with Different Ply Orientations
title_short A Microscale Analysis of Thermal Residual Stresses in Composites with Different Ply Orientations
title_sort microscale analysis of thermal residual stresses in composites with different ply orientations
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10574051/
https://www.ncbi.nlm.nih.gov/pubmed/37834704
http://dx.doi.org/10.3390/ma16196567
work_keys_str_mv AT wangyanfeng amicroscaleanalysisofthermalresidualstressesincompositeswithdifferentplyorientations
AT wuqi amicroscaleanalysisofthermalresidualstressesincompositeswithdifferentplyorientations
AT wangyanfeng microscaleanalysisofthermalresidualstressesincompositeswithdifferentplyorientations
AT wuqi microscaleanalysisofthermalresidualstressesincompositeswithdifferentplyorientations