Cargando…
An Optimization Method of Deep Transfer Learning for Vegetation Segmentation under Rainy and Dry Season Differences in a Dry Thermal Valley
Deep learning networks might require re-training for different datasets, consuming significant manual labeling and training time. Transfer learning uses little new data and training time to enable pre-trained network segmentation in relevant scenarios (e.g., different vegetation images in rainy and...
Autores principales: | Chen, Yayong, Zhou, Beibei, Ye, Dapeng, Cui, Lei, Feng, Lei, Han, Xiaojie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10574146/ https://www.ncbi.nlm.nih.gov/pubmed/37836123 http://dx.doi.org/10.3390/plants12193383 |
Ejemplares similares
-
The ovarian and uterine responses of Baixadeiro mares to prostaglandin synchronization during the dry and rainy seasons
por: Rosa, Luciana Cordeiro, et al.
Publicado: (2022) -
Rainy season onset mainly drives the spatiotemporal variability of spring vegetation green-up across alpine dry ecosystems on the Tibetan Plateau
por: Li, Xiang, et al.
Publicado: (2020) -
Rift Valley Fever during Rainy Seasons, Madagascar, 2008 and 2009
por: Andriamandimby, Soa Fy, et al.
Publicado: (2010) -
Prevalence of Plasmodium falciparum Infection in Rainy Season, Artibonite Valley, Haiti, 2006
por: Eisele, Thomas P., et al.
Publicado: (2007) -
Protozoans bacterivory in a subtropical environment during a dry/cold and a rainy/warm season
por: Hisatugo, Karina F., et al.
Publicado: (2014)