Cargando…

Phosphate Transporter BnaPT37 Regulates Phosphate Homeostasis in Brassica napus by Changing Its Translocation and Distribution In Vivo

Inorganic phosphate (Pi) is actively taken up by Pi transporters (PTs) from the soil and transported into the plant. Here, we functionally characterized the Brassica napus gene BnaPT37, which belongs to the PHT1 family. BnaPT37 is a plasma membrane-localized protein containing 534 amino acids. Expre...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Yu, Wang, Xue, Zhang, Hao, Ye, Xiangsheng, Shi, Lei, Xu, Fangsen, Ding, Guangda
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10574216/
https://www.ncbi.nlm.nih.gov/pubmed/37836101
http://dx.doi.org/10.3390/plants12193362
Descripción
Sumario:Inorganic phosphate (Pi) is actively taken up by Pi transporters (PTs) from the soil and transported into the plant. Here, we functionally characterized the Brassica napus gene BnaPT37, which belongs to the PHT1 family. BnaPT37 is a plasma membrane-localized protein containing 534 amino acids. Expression of BnaPT37 increased significantly under Pi deficiency in various tissues, especially in fully expanded leaves. Expression of the β-glucuronidase reporter gene driven by the BnaPT37 promoter showed that BnaPT37 is expressed in the root, stem, calyx, and leaf under Pi deficiency. BnaPT37 can complement a yeast mutant strain defective in five Pi transporters and can restore the growth of the Arabidopsis atpt1/2 double mutant under Pi deprivation. Overexpression of BnaPT37 in rapeseed significantly increased Pi translocation from root to shoot. Moreover, the movement of Pi from fully expanded leaves to new leaves and roots was enhanced in the transgenic lines compared to the wild type. However, the overexpression of BnaPT37 inhibited the flowering time, plant height, and Pi accumulation in seeds. In conclusion, BnaPT37 functions as a plasma membrane-localized Pi transporter and might be involved in Pi translocation from root to shoot and Pi distribution from source to sink in B. napus.