Cargando…

Integrated Structural, Functional, and ADMET Analysis of 2-Methoxy-4,6-Diphenylnicotinonitrile: The Convergence of X-ray Diffraction, Molecular Docking, Dynamic Simulations, and Advanced Computational Insights

This study systematically investigates the molecular structure and electronic properties of 2-methoxy-4,6-diphenylnicotinonitrile, employing X-ray diffraction (XRD) and sophisticated computational methodologies. XRD findings validate the compound’s orthorhombic crystallization in the P21212 space gr...

Descripción completa

Detalles Bibliográficos
Autores principales: Bakheit, Ahmed H., Alkahtani, Hamad M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10574294/
https://www.ncbi.nlm.nih.gov/pubmed/37836701
http://dx.doi.org/10.3390/molecules28196859
_version_ 1785120660281884672
author Bakheit, Ahmed H.
Alkahtani, Hamad M.
author_facet Bakheit, Ahmed H.
Alkahtani, Hamad M.
author_sort Bakheit, Ahmed H.
collection PubMed
description This study systematically investigates the molecular structure and electronic properties of 2-methoxy-4,6-diphenylnicotinonitrile, employing X-ray diffraction (XRD) and sophisticated computational methodologies. XRD findings validate the compound’s orthorhombic crystallization in the P21212 space group, composed of a pyridine core flanked by two phenyl rings. Utilizing the three-dimensional Hirshfeld surface, the research decodes the molecule’s spatial attributes, further supported by exhaustive statistical assessments. Key interactions, such as π–π stacking and H⋯X contacts, are spotlighted, underscoring their role in the crystal’s inherent stability and characteristics. Energy framework computations and density functional theory (DFT) analyses elucidate the prevailing forces in the crystal and reveal geometric optimization facets and molecular reactivity descriptors. Emphasis is given to the exploration of frontier molecular orbitals (FMOs), aromaticity, and π–π stacking capacities. The research culminates in distinguishing electron density distributions, aromatic nuances, and potential reactivity hotspots, providing a holistic view of the compound’s structural and electronic landscape. Concurrently, molecular docking investigates its interaction with the lipoprotein-associated phospholipase A2 protein. Notably, the compound showcases significant interactions with the protein’s active site. Molecular dynamics simulations reveal the compound’s influence on protein stability and flexibility. Although the molecule exhibits strong inhibitory potential against Lp-PLA2, its drug development prospects face challenges related to solubility and interactions with drug transport proteins.
format Online
Article
Text
id pubmed-10574294
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-105742942023-10-14 Integrated Structural, Functional, and ADMET Analysis of 2-Methoxy-4,6-Diphenylnicotinonitrile: The Convergence of X-ray Diffraction, Molecular Docking, Dynamic Simulations, and Advanced Computational Insights Bakheit, Ahmed H. Alkahtani, Hamad M. Molecules Article This study systematically investigates the molecular structure and electronic properties of 2-methoxy-4,6-diphenylnicotinonitrile, employing X-ray diffraction (XRD) and sophisticated computational methodologies. XRD findings validate the compound’s orthorhombic crystallization in the P21212 space group, composed of a pyridine core flanked by two phenyl rings. Utilizing the three-dimensional Hirshfeld surface, the research decodes the molecule’s spatial attributes, further supported by exhaustive statistical assessments. Key interactions, such as π–π stacking and H⋯X contacts, are spotlighted, underscoring their role in the crystal’s inherent stability and characteristics. Energy framework computations and density functional theory (DFT) analyses elucidate the prevailing forces in the crystal and reveal geometric optimization facets and molecular reactivity descriptors. Emphasis is given to the exploration of frontier molecular orbitals (FMOs), aromaticity, and π–π stacking capacities. The research culminates in distinguishing electron density distributions, aromatic nuances, and potential reactivity hotspots, providing a holistic view of the compound’s structural and electronic landscape. Concurrently, molecular docking investigates its interaction with the lipoprotein-associated phospholipase A2 protein. Notably, the compound showcases significant interactions with the protein’s active site. Molecular dynamics simulations reveal the compound’s influence on protein stability and flexibility. Although the molecule exhibits strong inhibitory potential against Lp-PLA2, its drug development prospects face challenges related to solubility and interactions with drug transport proteins. MDPI 2023-09-28 /pmc/articles/PMC10574294/ /pubmed/37836701 http://dx.doi.org/10.3390/molecules28196859 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Bakheit, Ahmed H.
Alkahtani, Hamad M.
Integrated Structural, Functional, and ADMET Analysis of 2-Methoxy-4,6-Diphenylnicotinonitrile: The Convergence of X-ray Diffraction, Molecular Docking, Dynamic Simulations, and Advanced Computational Insights
title Integrated Structural, Functional, and ADMET Analysis of 2-Methoxy-4,6-Diphenylnicotinonitrile: The Convergence of X-ray Diffraction, Molecular Docking, Dynamic Simulations, and Advanced Computational Insights
title_full Integrated Structural, Functional, and ADMET Analysis of 2-Methoxy-4,6-Diphenylnicotinonitrile: The Convergence of X-ray Diffraction, Molecular Docking, Dynamic Simulations, and Advanced Computational Insights
title_fullStr Integrated Structural, Functional, and ADMET Analysis of 2-Methoxy-4,6-Diphenylnicotinonitrile: The Convergence of X-ray Diffraction, Molecular Docking, Dynamic Simulations, and Advanced Computational Insights
title_full_unstemmed Integrated Structural, Functional, and ADMET Analysis of 2-Methoxy-4,6-Diphenylnicotinonitrile: The Convergence of X-ray Diffraction, Molecular Docking, Dynamic Simulations, and Advanced Computational Insights
title_short Integrated Structural, Functional, and ADMET Analysis of 2-Methoxy-4,6-Diphenylnicotinonitrile: The Convergence of X-ray Diffraction, Molecular Docking, Dynamic Simulations, and Advanced Computational Insights
title_sort integrated structural, functional, and admet analysis of 2-methoxy-4,6-diphenylnicotinonitrile: the convergence of x-ray diffraction, molecular docking, dynamic simulations, and advanced computational insights
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10574294/
https://www.ncbi.nlm.nih.gov/pubmed/37836701
http://dx.doi.org/10.3390/molecules28196859
work_keys_str_mv AT bakheitahmedh integratedstructuralfunctionalandadmetanalysisof2methoxy46diphenylnicotinonitriletheconvergenceofxraydiffractionmoleculardockingdynamicsimulationsandadvancedcomputationalinsights
AT alkahtanihamadm integratedstructuralfunctionalandadmetanalysisof2methoxy46diphenylnicotinonitriletheconvergenceofxraydiffractionmoleculardockingdynamicsimulationsandadvancedcomputationalinsights