Cargando…

Physiological and Cellular Ultrastructural Responses of Sesuvium portulacastrum under Cd Stress Grown Hydroponically

This study aimed to investigate the physiological and cellular mechanisms of Sesuvium portulacastrum under heavy metal stress to evaluate possible tolerance and adaptation mechanisms in a metal-polluted environment. The physiological and cellular ultrastructural responses of S. portulacastrum were s...

Descripción completa

Detalles Bibliográficos
Autores principales: Uddin, Mohammad Mazbah, Chen, Zhenfang, Xu, Fuliu, Huang, Lingfeng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10574335/
https://www.ncbi.nlm.nih.gov/pubmed/37836122
http://dx.doi.org/10.3390/plants12193381
Descripción
Sumario:This study aimed to investigate the physiological and cellular mechanisms of Sesuvium portulacastrum under heavy metal stress to evaluate possible tolerance and adaptation mechanisms in a metal-polluted environment. The physiological and cellular ultrastructural responses of S. portulacastrum were studied hydroponically under exposure to a range of cadmium (Cd) concentrations (50 µM to 600 µM) for 28 days. The activity of antioxidant enzymes like catalase (CAT), superoxide dismutase (SOD), and peroxidase (POD), changes in chlorophyll, and cellular ultrastructural content were examined. There was no significant difference in chlorophyll content in the leaf under the stress of 300 μM, but 400 μM and 600 μM Cd stress showed significantly decreased chlorophyll content. The SOD activity indicates an increase under the Cd stress of 100 μM for leaves, 300 μM for stems, and 50 μM for roots; after that, the SOD activity gradually decreased with increasing Cd concentrations. But POD activity was considerably increased with increasing Cd stress. CAT activity showed a gradual increase in concentrations until 300 μM of Cd stress and then decreased sharply in roots, stems, and leaf tissues. Cd stress had a considerable impact on the structure of the roots, stems, and leaves cells, such as distorted and thinner cell walls and the deformation of chloroplasts, mitochondria, and other organelles. Therefore, the increased number of nucleolus in the cell nucleus suggests that cells may be able to maintain their protein synthesis in a stressful environment. This study concludes that SOD is the dominant antioxidant enzyme activity during low Cd toxicity (<100 μM), while POD is the dominant enzyme activity during higher Cd toxicity (>100 μM).