Cargando…
Electron Transport Properties of Graphene/WS(2) Van Der Waals Heterojunctions
Van der Waals heterojunctions of two-dimensional atomic crystals are widely used to build functional devices due to their excellent optoelectronic properties, which are attracting more and more attention, and various methods have been developed to study their structure and properties. Here, density...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10574387/ https://www.ncbi.nlm.nih.gov/pubmed/37836709 http://dx.doi.org/10.3390/molecules28196866 |
_version_ | 1785120682650107904 |
---|---|
author | Guo, Junnan Dai, Xinyue Zhang, Lishu Li, Hui |
author_facet | Guo, Junnan Dai, Xinyue Zhang, Lishu Li, Hui |
author_sort | Guo, Junnan |
collection | PubMed |
description | Van der Waals heterojunctions of two-dimensional atomic crystals are widely used to build functional devices due to their excellent optoelectronic properties, which are attracting more and more attention, and various methods have been developed to study their structure and properties. Here, density functional theory combined with the nonequilibrium Green’s function technique has been used to calculate the transport properties of graphene/WS(2) heterojunctions. It is observed that the formation of heterojunctions does not lead to the opening of the Dirac point of graphene. Instead, the respective band structures of both graphene and WS(2) are preserved. Therefore, the heterojunction follows a unique Ohm’s law at low bias voltages, despite the presence of a certain rotation angle between the two surfaces within the heterojunction. The transmission spectra, the density of states, and the transmission eigenstate are used to investigate the origin and mechanism of unique linear I–V characteristics. This study provides a theoretical framework for designing mixed-dimensional heterojunction nanoelectronic devices. |
format | Online Article Text |
id | pubmed-10574387 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-105743872023-10-14 Electron Transport Properties of Graphene/WS(2) Van Der Waals Heterojunctions Guo, Junnan Dai, Xinyue Zhang, Lishu Li, Hui Molecules Article Van der Waals heterojunctions of two-dimensional atomic crystals are widely used to build functional devices due to their excellent optoelectronic properties, which are attracting more and more attention, and various methods have been developed to study their structure and properties. Here, density functional theory combined with the nonequilibrium Green’s function technique has been used to calculate the transport properties of graphene/WS(2) heterojunctions. It is observed that the formation of heterojunctions does not lead to the opening of the Dirac point of graphene. Instead, the respective band structures of both graphene and WS(2) are preserved. Therefore, the heterojunction follows a unique Ohm’s law at low bias voltages, despite the presence of a certain rotation angle between the two surfaces within the heterojunction. The transmission spectra, the density of states, and the transmission eigenstate are used to investigate the origin and mechanism of unique linear I–V characteristics. This study provides a theoretical framework for designing mixed-dimensional heterojunction nanoelectronic devices. MDPI 2023-09-29 /pmc/articles/PMC10574387/ /pubmed/37836709 http://dx.doi.org/10.3390/molecules28196866 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Guo, Junnan Dai, Xinyue Zhang, Lishu Li, Hui Electron Transport Properties of Graphene/WS(2) Van Der Waals Heterojunctions |
title | Electron Transport Properties of Graphene/WS(2) Van Der Waals Heterojunctions |
title_full | Electron Transport Properties of Graphene/WS(2) Van Der Waals Heterojunctions |
title_fullStr | Electron Transport Properties of Graphene/WS(2) Van Der Waals Heterojunctions |
title_full_unstemmed | Electron Transport Properties of Graphene/WS(2) Van Der Waals Heterojunctions |
title_short | Electron Transport Properties of Graphene/WS(2) Van Der Waals Heterojunctions |
title_sort | electron transport properties of graphene/ws(2) van der waals heterojunctions |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10574387/ https://www.ncbi.nlm.nih.gov/pubmed/37836709 http://dx.doi.org/10.3390/molecules28196866 |
work_keys_str_mv | AT guojunnan electrontransportpropertiesofgraphenews2vanderwaalsheterojunctions AT daixinyue electrontransportpropertiesofgraphenews2vanderwaalsheterojunctions AT zhanglishu electrontransportpropertiesofgraphenews2vanderwaalsheterojunctions AT lihui electrontransportpropertiesofgraphenews2vanderwaalsheterojunctions |