Cargando…
Spike Optimization to Improve Properties of Ferroelectric Tunnel Junction Synaptic Devices for Neuromorphic Computing System Applications
The continuous advancement of Artificial Intelligence (AI) technology depends on the efficient processing of unstructured data, encompassing text, speech, and video. Traditional serial computing systems based on the von Neumann architecture, employed in information and communication technology devel...
Autores principales: | Byun, Jisu, Kho, Wonwoo, Hwang, Hyunjoo, Kang, Yoomi, Kang, Minjeong, Noh, Taewan, Kim, Hoseong, Lee, Jimin, Kim, Hyo-Bae, Ahn, Ji-Hoon, Ahn, Seung-Eon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10574482/ https://www.ncbi.nlm.nih.gov/pubmed/37836345 http://dx.doi.org/10.3390/nano13192704 |
Ejemplares similares
-
Synaptic Characteristic of Hafnia-Based Ferroelectric Tunnel Junction Device for Neuromorphic Computing Application
por: Kho, Wonwoo, et al.
Publicado: (2022) -
Improvement of Resistance Change Memory Characteristics in Ferroelectric and Antiferroelectric (like) Parallel Structures
por: Kho, Wonwoo, et al.
Publicado: (2023) -
Self‐Curable Synaptic Ferroelectric FET Arrays for Neuromorphic Convolutional Neural Network
por: Shin, Wonjun, et al.
Publicado: (2023) -
Spike-shape dependence of the spike-timing dependent synaptic plasticity in ferroelectric-tunnel-junction synapses
por: Stoliar, P., et al.
Publicado: (2019) -
Ferroelectric Tunneling Junctions Based on Aluminum Oxide/ Zirconium-Doped Hafnium Oxide for Neuromorphic Computing
por: Ryu, Hojoon, et al.
Publicado: (2019)