Cargando…
Multifunctional Biotemplated Micromotors for In Situ Decontamination of Antibiotics and Heavy Metals in Soil and Groundwater
The ubiquitous pollution by antibiotics and heavy metal ions has posed great threats to human health and the ecological environment. Therefore, we developed a self-propelled tubular micromotor based on natural fibers as an active heterogeneous catalyst for antibiotic degradation and adsorbent for he...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10574631/ https://www.ncbi.nlm.nih.gov/pubmed/37836351 http://dx.doi.org/10.3390/nano13192710 |
Sumario: | The ubiquitous pollution by antibiotics and heavy metal ions has posed great threats to human health and the ecological environment. Therefore, we developed a self-propelled tubular micromotor based on natural fibers as an active heterogeneous catalyst for antibiotic degradation and adsorbent for heavy metal ions in soil/water. The prepared micromotors can move in the presence of hydrogen peroxide (H(2)O(2)) through a bubble recoil mechanism. The MnO(2) NPs and MnFe(2)O(4) NPs loaded on the hollow fibers not only enabled self-driven motion and magnetic control but also served as activators of peroxymononsulfate (PMS) and H(2)O(2) to produce active free radicals SO(4)(•−) and •OH. Benefiting from the self-propulsion and bubble generation, the micromotors can effectively overcome the disadvantage of low diffusivity of traditional heterogeneous catalysts, achieving the degradation of more than 90% TC in soil within 30 min. Meanwhile, due to the large specific surface area, abundant active sites, and strong negative zeta potential, the micromotors can effectively adsorb heavy metal ions in the water environment. In 120 min, self-propelled micromotors removed more than 94% of lead ions, an increase of 47% compared to static micromotors, illustrating the advantages of on-the-fly capture. The prepared micromotors with excellent catalytic performance and adsorption capacity can simultaneously degrade antibiotics and adsorb heavy metal ions. Moreover, the magnetic response enabled the micromotors to be effectively separated from the system after completion of the task, avoiding the problem of secondary pollution. Overall, the proposed micromotors provide a new approach to the utilization of natural materials in environmental applications. |
---|