Cargando…

Evaluation of the Microstructure and Mechanical Properties of the Butt-Welded Joints of Spiral Pipes Made of L485ME (X70) Steel

The expansion of the gas pipeline network makes it necessary, on the one hand, to meet the requirements of standards regarding the materials used, but on the other hand, it is necessary to weld them. In the case of natural gas as a fuel, the welding process is widely used, but in the case of replaci...

Descripción completa

Detalles Bibliográficos
Autor principal: Tuz, Lechosław
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10574686/
https://www.ncbi.nlm.nih.gov/pubmed/37834698
http://dx.doi.org/10.3390/ma16196557
Descripción
Sumario:The expansion of the gas pipeline network makes it necessary, on the one hand, to meet the requirements of standards regarding the materials used, but on the other hand, it is necessary to weld them. In the case of natural gas as a fuel, the welding process is widely used, but in the case of replacing natural gas with a mixture of this gas and hydrogen, the requirements regarding the quality of the process must be significantly increased or the process must be completely changed. This article presents the results of testing welded joints for a newly developed welding technology for the transmission of a hydrogen mixture. Material tests were carried out on a butt-circumferential-welded joint made between two spiral pipes with an outer diameter of 711 mm and wall thickness of 11 mm in the X70 grade. The developed welding technology is distinguished by a change in the beveling method of the edges, which allows the heat input to the material to be limited. The technology was developed for use in natural on-shore and off-shore gas pipelines with the addition of hydrogen. As a result, additional requirements in terms of joint plasticity had to be met during welding. The test results obtained indicate that the joints are characterized by high strength (more than 581 MPa), higher than that of the base material (fracture in the base material) and good impact strength at reduced temperature (more than 129 J). In transverse corrosion, a hardness below 250 HV and a favorable structure of ferrite with different morphologies were obtained.