Cargando…

Chemometric Analysis for the Prediction of Biochemical Compounds in Leaves Using UV-VIS-NIR-SWIR Hyperspectroscopy

Reflectance hyperspectroscopy is recognised for its potential to elucidate biochemical changes, thereby enhancing the understanding of plant biochemistry. This study used the UV-VIS-NIR-SWIR spectral range to identify the different biochemical constituents in Hibiscus and Geranium plants. Hyperspect...

Descripción completa

Detalles Bibliográficos
Autores principales: Falcioni, Renan, Gonçalves, João Vitor Ferreira, de Oliveira, Karym Mayara, de Oliveira, Caio Almeida, Reis, Amanda Silveira, Crusiol, Luis Guilherme Teixeira, Furlanetto, Renato Herrig, Antunes, Werner Camargos, Cezar, Everson, de Oliveira, Roney Berti, Chicati, Marcelo Luiz, Demattê, José Alexandre M., Nanni, Marcos Rafael
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10574701/
https://www.ncbi.nlm.nih.gov/pubmed/37836163
http://dx.doi.org/10.3390/plants12193424
_version_ 1785120754051842048
author Falcioni, Renan
Gonçalves, João Vitor Ferreira
de Oliveira, Karym Mayara
de Oliveira, Caio Almeida
Reis, Amanda Silveira
Crusiol, Luis Guilherme Teixeira
Furlanetto, Renato Herrig
Antunes, Werner Camargos
Cezar, Everson
de Oliveira, Roney Berti
Chicati, Marcelo Luiz
Demattê, José Alexandre M.
Nanni, Marcos Rafael
author_facet Falcioni, Renan
Gonçalves, João Vitor Ferreira
de Oliveira, Karym Mayara
de Oliveira, Caio Almeida
Reis, Amanda Silveira
Crusiol, Luis Guilherme Teixeira
Furlanetto, Renato Herrig
Antunes, Werner Camargos
Cezar, Everson
de Oliveira, Roney Berti
Chicati, Marcelo Luiz
Demattê, José Alexandre M.
Nanni, Marcos Rafael
author_sort Falcioni, Renan
collection PubMed
description Reflectance hyperspectroscopy is recognised for its potential to elucidate biochemical changes, thereby enhancing the understanding of plant biochemistry. This study used the UV-VIS-NIR-SWIR spectral range to identify the different biochemical constituents in Hibiscus and Geranium plants. Hyperspectral vegetation indices (HVIs), principal component analysis (PCA), and correlation matrices provided in-depth insights into spectral differences. Through the application of advanced algorithms—such as PLS, VIP, iPLS-VIP, GA, RF, and CARS—the most responsive wavelengths were discerned. PLSR models consistently achieved R(2) values above 0.75, presenting noteworthy predictions of 0.86 for DPPH and 0.89 for lignin. The red-edge and SWIR bands displayed strong associations with pivotal plant pigments and structural molecules, thus expanding the perspectives on leaf spectral dynamics. These findings highlight the efficacy of spectroscopy coupled with multivariate analysis in evaluating the management of biochemical compounds. A technique was introduced to measure the photosynthetic pigments and structural compounds via hyperspectroscopy across UV-VIS-NIR-SWIR, underpinned by rapid multivariate PLSR. Collectively, our results underscore the burgeoning potential of hyperspectroscopy in precision agriculture. This indicates a promising paradigm shift in plant phenotyping and biochemical evaluation.
format Online
Article
Text
id pubmed-10574701
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-105747012023-10-14 Chemometric Analysis for the Prediction of Biochemical Compounds in Leaves Using UV-VIS-NIR-SWIR Hyperspectroscopy Falcioni, Renan Gonçalves, João Vitor Ferreira de Oliveira, Karym Mayara de Oliveira, Caio Almeida Reis, Amanda Silveira Crusiol, Luis Guilherme Teixeira Furlanetto, Renato Herrig Antunes, Werner Camargos Cezar, Everson de Oliveira, Roney Berti Chicati, Marcelo Luiz Demattê, José Alexandre M. Nanni, Marcos Rafael Plants (Basel) Article Reflectance hyperspectroscopy is recognised for its potential to elucidate biochemical changes, thereby enhancing the understanding of plant biochemistry. This study used the UV-VIS-NIR-SWIR spectral range to identify the different biochemical constituents in Hibiscus and Geranium plants. Hyperspectral vegetation indices (HVIs), principal component analysis (PCA), and correlation matrices provided in-depth insights into spectral differences. Through the application of advanced algorithms—such as PLS, VIP, iPLS-VIP, GA, RF, and CARS—the most responsive wavelengths were discerned. PLSR models consistently achieved R(2) values above 0.75, presenting noteworthy predictions of 0.86 for DPPH and 0.89 for lignin. The red-edge and SWIR bands displayed strong associations with pivotal plant pigments and structural molecules, thus expanding the perspectives on leaf spectral dynamics. These findings highlight the efficacy of spectroscopy coupled with multivariate analysis in evaluating the management of biochemical compounds. A technique was introduced to measure the photosynthetic pigments and structural compounds via hyperspectroscopy across UV-VIS-NIR-SWIR, underpinned by rapid multivariate PLSR. Collectively, our results underscore the burgeoning potential of hyperspectroscopy in precision agriculture. This indicates a promising paradigm shift in plant phenotyping and biochemical evaluation. MDPI 2023-09-28 /pmc/articles/PMC10574701/ /pubmed/37836163 http://dx.doi.org/10.3390/plants12193424 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Falcioni, Renan
Gonçalves, João Vitor Ferreira
de Oliveira, Karym Mayara
de Oliveira, Caio Almeida
Reis, Amanda Silveira
Crusiol, Luis Guilherme Teixeira
Furlanetto, Renato Herrig
Antunes, Werner Camargos
Cezar, Everson
de Oliveira, Roney Berti
Chicati, Marcelo Luiz
Demattê, José Alexandre M.
Nanni, Marcos Rafael
Chemometric Analysis for the Prediction of Biochemical Compounds in Leaves Using UV-VIS-NIR-SWIR Hyperspectroscopy
title Chemometric Analysis for the Prediction of Biochemical Compounds in Leaves Using UV-VIS-NIR-SWIR Hyperspectroscopy
title_full Chemometric Analysis for the Prediction of Biochemical Compounds in Leaves Using UV-VIS-NIR-SWIR Hyperspectroscopy
title_fullStr Chemometric Analysis for the Prediction of Biochemical Compounds in Leaves Using UV-VIS-NIR-SWIR Hyperspectroscopy
title_full_unstemmed Chemometric Analysis for the Prediction of Biochemical Compounds in Leaves Using UV-VIS-NIR-SWIR Hyperspectroscopy
title_short Chemometric Analysis for the Prediction of Biochemical Compounds in Leaves Using UV-VIS-NIR-SWIR Hyperspectroscopy
title_sort chemometric analysis for the prediction of biochemical compounds in leaves using uv-vis-nir-swir hyperspectroscopy
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10574701/
https://www.ncbi.nlm.nih.gov/pubmed/37836163
http://dx.doi.org/10.3390/plants12193424
work_keys_str_mv AT falcionirenan chemometricanalysisforthepredictionofbiochemicalcompoundsinleavesusinguvvisnirswirhyperspectroscopy
AT goncalvesjoaovitorferreira chemometricanalysisforthepredictionofbiochemicalcompoundsinleavesusinguvvisnirswirhyperspectroscopy
AT deoliveirakarymmayara chemometricanalysisforthepredictionofbiochemicalcompoundsinleavesusinguvvisnirswirhyperspectroscopy
AT deoliveiracaioalmeida chemometricanalysisforthepredictionofbiochemicalcompoundsinleavesusinguvvisnirswirhyperspectroscopy
AT reisamandasilveira chemometricanalysisforthepredictionofbiochemicalcompoundsinleavesusinguvvisnirswirhyperspectroscopy
AT crusiolluisguilhermeteixeira chemometricanalysisforthepredictionofbiochemicalcompoundsinleavesusinguvvisnirswirhyperspectroscopy
AT furlanettorenatoherrig chemometricanalysisforthepredictionofbiochemicalcompoundsinleavesusinguvvisnirswirhyperspectroscopy
AT antuneswernercamargos chemometricanalysisforthepredictionofbiochemicalcompoundsinleavesusinguvvisnirswirhyperspectroscopy
AT cezareverson chemometricanalysisforthepredictionofbiochemicalcompoundsinleavesusinguvvisnirswirhyperspectroscopy
AT deoliveiraroneyberti chemometricanalysisforthepredictionofbiochemicalcompoundsinleavesusinguvvisnirswirhyperspectroscopy
AT chicatimarceloluiz chemometricanalysisforthepredictionofbiochemicalcompoundsinleavesusinguvvisnirswirhyperspectroscopy
AT demattejosealexandrem chemometricanalysisforthepredictionofbiochemicalcompoundsinleavesusinguvvisnirswirhyperspectroscopy
AT nannimarcosrafael chemometricanalysisforthepredictionofbiochemicalcompoundsinleavesusinguvvisnirswirhyperspectroscopy