Cargando…
Cluster Content Caching: A Deep Reinforcement Learning Approach to Improve Energy Efficiency in Cell-Free Massive Multiple-Input Multiple-Output Networks
With the explosive growth of micro-video applications, the transmission burden of fronthaul and backhaul links is increasing, and meanwhile, a lot of energy consumption is also generated. For reducing energy consumption and transmission delay burden, we propose a cell-free massive multiple-input mul...
Autores principales: | Tan, Fangqing, Peng, Yuan, Liu, Qiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10574842/ https://www.ncbi.nlm.nih.gov/pubmed/37837129 http://dx.doi.org/10.3390/s23198295 |
Ejemplares similares
-
Application of Reinforcement Learning and Deep Learning in Multiple-Input and Multiple-Output (MIMO) Systems
por: Naeem, Muddasar, et al.
Publicado: (2021) -
DLSMR: Deep Learning-Based Secure Multicast Routing Protocol against Wormhole Attack in Flying Ad Hoc Networks with Cell-Free Massive Multiple-Input Multiple-Output †
por: Pramitarini, Yushintia, et al.
Publicado: (2023) -
The state of the art in beyond 5G distributed massive multiple-input multiple-output communication system solutions
por: Meyer, E., et al.
Publicado: (2022) -
Modification of Simple Antenna Pattern Models for Inter-Beam Interference Assessment in Massive Multiple-Input–Multiple-Output Systems †
por: Wojtuń, Jarosław, et al.
Publicado: (2023) -
Antenna selection for multiple-input multiple-output systems based on deep convolutional neural networks
por: Cai, Jia-xin, et al.
Publicado: (2019)