Cargando…
iCanClean Removes Motion, Muscle, Eye, and Line-Noise Artifacts from Phantom EEG
The goal of this study was to test a novel approach (iCanClean) to remove non-brain sources from scalp EEG data recorded in mobile conditions. We created an electrically conductive phantom head with 10 brain sources, 10 contaminating sources, scalp, and hair. We tested the ability of iCanClean to re...
Autores principales: | Downey, Ryan J., Ferris, Daniel P. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10574843/ https://www.ncbi.nlm.nih.gov/pubmed/37837044 http://dx.doi.org/10.3390/s23198214 |
Ejemplares similares
-
iCanClean Improves Independent Component Analysis of Mobile Brain Imaging with EEG
por: Gonsisko, Colton B., et al.
Publicado: (2023) -
Characterizing and Removing Artifacts Using Dual-Layer EEG during Table Tennis
por: Studnicki, Amanda, et al.
Publicado: (2022) -
Gaussian Elimination-Based Novel Canonical Correlation Analysis Method for EEG Motion Artifact Removal
por: Roy, Vandana, et al.
Publicado: (2017) -
Eye-blink artifact removal from single channel EEG with k-means and SSA
por: Maddirala, Ajay Kumar, et al.
Publicado: (2021) -
A Channel Rejection Method for Attenuating Motion-Related Artifacts in EEG Recordings during Walking
por: Oliveira, Anderson S., et al.
Publicado: (2017)