Cargando…
SenseLite: A YOLO-Based Lightweight Model for Small Object Detection in Aerial Imagery
In the field of aerial remote sensing, detecting small objects in aerial images is challenging. Their subtle presence against broad backgrounds, combined with environmental complexities and low image resolution, complicates identification. While their detection is crucial for urban planning, traffic...
Autores principales: | Han, Tianxin, Dong, Qing, Sun, Lina |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10574857/ https://www.ncbi.nlm.nih.gov/pubmed/37836948 http://dx.doi.org/10.3390/s23198118 |
Ejemplares similares
-
Efficient-Lightweight YOLO: Improving Small Object Detection in YOLO for Aerial Images
por: Hu, Mengzi, et al.
Publicado: (2023) -
YOLO-S: A Lightweight and Accurate YOLO-like Network for Small Target Selection in Aerial Imagery
por: Betti, Alessandro, et al.
Publicado: (2023) -
GL-YOLO-Lite: A Novel Lightweight Fallen Person Detection Model
por: Dai, Yuan, et al.
Publicado: (2023) -
Lightweight Object Detection Algorithm for UAV Aerial Imagery
por: Wang, Jian, et al.
Publicado: (2023) -
UAV-YOLO: Small Object Detection on Unmanned Aerial Vehicle Perspective
por: Liu, Mingjie, et al.
Publicado: (2020)