Cargando…
A Hierarchical Multitask Learning Approach for the Recognition of Activities of Daily Living Using Data from Wearable Sensors
Machine learning with deep neural networks (DNNs) is widely used for human activity recognition (HAR) to automatically learn features, identify and analyze activities, and to produce a consequential outcome in numerous applications. However, learning robust features requires an enormous number of la...
Autores principales: | Nisar, Muhammad Adeel, Shirahama, Kimiaki, Irshad, Muhammad Tausif, Huang, Xinyu, Grzegorzek, Marcin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10574864/ https://www.ncbi.nlm.nih.gov/pubmed/37837064 http://dx.doi.org/10.3390/s23198234 |
Ejemplares similares
-
Rank Pooling Approach for Wearable Sensor-Based ADLs Recognition
por: Nisar, Muhammad Adeel, et al.
Publicado: (2020) -
Comparison of Feature Learning Methods for Human Activity Recognition Using Wearable Sensors
por: Li, Frédéric, et al.
Publicado: (2018) -
Sleep Stage Classification in Children Using Self-Attention and Gaussian Noise Data Augmentation
por: Huang, Xinyu, et al.
Publicado: (2023) -
Deep Transfer Learning for Time Series Data Based on Sensor Modality Classification
por: Li, Frédéric, et al.
Publicado: (2020) -
SenseHunger: Machine Learning Approach to Hunger Detection Using Wearable Sensors
por: Irshad, Muhammad Tausif, et al.
Publicado: (2022)