Cargando…
GPU Rasterization-Based 3D LiDAR Simulation for Deep Learning
High-quality data are of utmost importance for any deep-learning application. However, acquiring such data and their annotation is challenging. This paper presents a GPU-accelerated simulator that enables the generation of high-quality, perfectly labelled data for any Time-of-Flight sensor, includin...
Autores principales: | Denis, Leon, Royen, Remco, Bolsée, Quentin, Vercheval, Nicolas, Pižurica, Aleksandra, Munteanu, Adrian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10574882/ https://www.ncbi.nlm.nih.gov/pubmed/37836959 http://dx.doi.org/10.3390/s23198130 |
Ejemplares similares
-
LiDAR Intensity Completion: Fully Exploiting the Message from LiDAR Sensors
por: Dai, Weichen, et al.
Publicado: (2022) -
A Fast Spatial Clustering Method for Sparse LiDAR Point Clouds Using GPU Programming
por: Tian, Yifei, et al.
Publicado: (2020) -
LiDAR remote sensing and applications
por: Dong, Pinliang, et al.
Publicado: (2017) -
Utilising LiDAR for fall detection
por: Frøvik, Nikolai, et al.
Publicado: (2021) -
Requirements for Automotive LiDAR Systems
por: Dai, Zhuoqun, et al.
Publicado: (2022)