Cargando…
Soft DAgger: Sample-Efficient Imitation Learning for Control of Soft Robots
This paper presents Soft DAgger, an efficient imitation learning-based approach for training control solutions for soft robots. To demonstrate the effectiveness of the proposed algorithm, we implement it on a two-module soft robotic arm involved in the task of writing letters in 3D space. Soft DAgge...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10574889/ https://www.ncbi.nlm.nih.gov/pubmed/37837107 http://dx.doi.org/10.3390/s23198278 |
_version_ | 1785120794606567424 |
---|---|
author | Nazeer, Muhammad Sunny Laschi, Cecilia Falotico, Egidio |
author_facet | Nazeer, Muhammad Sunny Laschi, Cecilia Falotico, Egidio |
author_sort | Nazeer, Muhammad Sunny |
collection | PubMed |
description | This paper presents Soft DAgger, an efficient imitation learning-based approach for training control solutions for soft robots. To demonstrate the effectiveness of the proposed algorithm, we implement it on a two-module soft robotic arm involved in the task of writing letters in 3D space. Soft DAgger uses a dynamic behavioral map of the soft robot, which maps the robot’s task space to its actuation space. The map acts as a teacher and is responsible for predicting the optimal actions for the soft robot based on its previous state action history, expert demonstrations, and current position. This algorithm achieves generalization ability without depending on costly exploration techniques or reinforcement learning-based synthetic agents. We propose two variants of the control algorithm and demonstrate that good generalization capabilities and improved task reproducibility can be achieved, along with a consistent decrease in the optimization time and samples. Overall, Soft DAgger provides a practical control solution to perform complex tasks in fewer samples with soft robots. To the best of our knowledge, our study is an initial exploration of imitation learning with online optimization for soft robot control. |
format | Online Article Text |
id | pubmed-10574889 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-105748892023-10-14 Soft DAgger: Sample-Efficient Imitation Learning for Control of Soft Robots Nazeer, Muhammad Sunny Laschi, Cecilia Falotico, Egidio Sensors (Basel) Article This paper presents Soft DAgger, an efficient imitation learning-based approach for training control solutions for soft robots. To demonstrate the effectiveness of the proposed algorithm, we implement it on a two-module soft robotic arm involved in the task of writing letters in 3D space. Soft DAgger uses a dynamic behavioral map of the soft robot, which maps the robot’s task space to its actuation space. The map acts as a teacher and is responsible for predicting the optimal actions for the soft robot based on its previous state action history, expert demonstrations, and current position. This algorithm achieves generalization ability without depending on costly exploration techniques or reinforcement learning-based synthetic agents. We propose two variants of the control algorithm and demonstrate that good generalization capabilities and improved task reproducibility can be achieved, along with a consistent decrease in the optimization time and samples. Overall, Soft DAgger provides a practical control solution to perform complex tasks in fewer samples with soft robots. To the best of our knowledge, our study is an initial exploration of imitation learning with online optimization for soft robot control. MDPI 2023-10-06 /pmc/articles/PMC10574889/ /pubmed/37837107 http://dx.doi.org/10.3390/s23198278 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Nazeer, Muhammad Sunny Laschi, Cecilia Falotico, Egidio Soft DAgger: Sample-Efficient Imitation Learning for Control of Soft Robots |
title | Soft DAgger: Sample-Efficient Imitation Learning for Control of Soft Robots |
title_full | Soft DAgger: Sample-Efficient Imitation Learning for Control of Soft Robots |
title_fullStr | Soft DAgger: Sample-Efficient Imitation Learning for Control of Soft Robots |
title_full_unstemmed | Soft DAgger: Sample-Efficient Imitation Learning for Control of Soft Robots |
title_short | Soft DAgger: Sample-Efficient Imitation Learning for Control of Soft Robots |
title_sort | soft dagger: sample-efficient imitation learning for control of soft robots |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10574889/ https://www.ncbi.nlm.nih.gov/pubmed/37837107 http://dx.doi.org/10.3390/s23198278 |
work_keys_str_mv | AT nazeermuhammadsunny softdaggersampleefficientimitationlearningforcontrolofsoftrobots AT laschicecilia softdaggersampleefficientimitationlearningforcontrolofsoftrobots AT faloticoegidio softdaggersampleefficientimitationlearningforcontrolofsoftrobots |