Cargando…

Probabilistic Modeling of Multicamera Interference for Time-of-Flight Sensors

The behavior of multicamera interference in 3D images (e.g., depth maps), which is based on infrared (IR) light, is not well understood. In 3D images, when multicamera interference is present, there is an increase in the amount of zero-value pixels, resulting in a loss of depth information. In this...

Descripción completa

Detalles Bibliográficos
Autores principales: Rodriguez, Bryan, Zhang, Xinxiang, Rajan, Dinesh
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10574901/
https://www.ncbi.nlm.nih.gov/pubmed/37836877
http://dx.doi.org/10.3390/s23198047
Descripción
Sumario:The behavior of multicamera interference in 3D images (e.g., depth maps), which is based on infrared (IR) light, is not well understood. In 3D images, when multicamera interference is present, there is an increase in the amount of zero-value pixels, resulting in a loss of depth information. In this work, we demonstrate a framework for synthetically generating direct and indirect multicamera interference using a combination of a probabilistic model and ray tracing. Our mathematical model predicts the locations and probabilities of zero-value pixels in depth maps that contain multicamera interference. Our model accurately predicts where depth information may be lost in a depth map when multicamera interference is present. We compare the proposed synthetic 3D interference images with controlled 3D interference images captured in our laboratory. The proposed framework achieves an average root mean square error (RMSE) of 0.0625, an average peak signal-to-noise ratio (PSNR) of 24.1277 dB, and an average structural similarity index measure (SSIM) of 0.9007 for predicting direct multicamera interference, and an average RMSE of 0.0312, an average PSNR of 26.2280 dB, and an average SSIM of 0.9064 for predicting indirect multicamera interference. The proposed framework can be used to develop and test interference mitigation techniques that will be crucial for the successful proliferation of these devices.