Cargando…
Structural Health Monitoring of Chemical Storage Tanks with Application of PZT Sensors
Chemical pressure storage tanks are containers designed to store fluids at high pressures, i.e., their internal pressure is higher than the atmospheric pressure. They can come in various shapes and sizes, and may be fabricated from a variety of materials. As aggressive chemical agents stored under e...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10574911/ https://www.ncbi.nlm.nih.gov/pubmed/37837082 http://dx.doi.org/10.3390/s23198252 |
Sumario: | Chemical pressure storage tanks are containers designed to store fluids at high pressures, i.e., their internal pressure is higher than the atmospheric pressure. They can come in various shapes and sizes, and may be fabricated from a variety of materials. As aggressive chemical agents stored under elevated pressures can cause significant damage to both people and the environment, it is essential to develop systems for the early damage detection and the monitoring of structural integrity of such vessels. The development of early damage detection and condition monitoring systems could also help to reduce the maintenance costs associated with periodic inspections of the structure and unforeseen operational breaks due to unmonitored damage development. It could also reduce the related environmental burden. In this paper, we consider a hybrid material composed of glass-fiber-reinforced polymers (GFRPs) and a polyethylene (PE) layer that is suitable for pressurized chemical storage tank manufacturing. GFRPs are used for the outer layer of the tank structure and provides the dominant part of the construction stiffness, while the PE layer is used for protection against the stored chemical medium. The considered damage scenarios include simulated cracks and an erosion of the inner PE layer, as these can be early signs of structural damage leading to the leakage of hazardous liquids, which could compromise safety and, possibly, harm the environment. For damage detection, PZT sensors were selected due to their widely recognized applicability for the purpose of structural health monitoring. For sensor installation, it was assumed that only the outer GFRP layer was available as otherwise sensors could be affected by the stored chemical agent. The main focus of this paper is to verify whether elastic waves excited by PZT sensors, which are installed on the outer GFRP layer, can penetrate the GFRP and PE interface and can be used to detect damage occurring in the inner PE layer. The efficiency of different signal characteristics used for structure evaluation is compared for various frequencies and durations of the excitation signal as well as feasibility of PZT sensor application for passive acquisition of acoustic emission signals is verified. |
---|