Cargando…

Role of Bio-Based and Fossil-Based Reactive Diluents in Epoxy Coatings with Amine and Phenalkamine Crosslinker

The properties of epoxy can be adapted depending on the selection of bio-based diluents and crosslinkers to balance the appropriate viscosity for processing and the resulting mechanical properties for coating applications. This work presents a comprehensive study on the structure–property relationsh...

Descripción completa

Detalles Bibliográficos
Autores principales: Samyn, Pieter, Bosmans, Joey, Cosemans, Patrick
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10574921/
https://www.ncbi.nlm.nih.gov/pubmed/37835905
http://dx.doi.org/10.3390/polym15193856
Descripción
Sumario:The properties of epoxy can be adapted depending on the selection of bio-based diluents and crosslinkers to balance the appropriate viscosity for processing and the resulting mechanical properties for coating applications. This work presents a comprehensive study on the structure–property relationships for epoxy coatings with various diluents of mono-, di-, and bio-based trifunctional glycidyl ethers or bio-based epoxidized soybean oil added in appropriate concentration ranges, in combination with a traditional fossil-based amine or bio-based phenalkamine crosslinker. The viscosity of epoxy resins was already reduced for diluents with simple linear molecular configurations at low concentrations, while higher concentrations of more complex multifunctional diluents were needed for a similar viscosity reduction. The curing kinetics were evaluated through the fitting of data from differential scanning calorimetry to an Arrhenius equation, yielding the lowest activation energies for difunctional diluents in parallel with a balance between viscosity and reactivity. While the variations in curing kinetics with a change in diluent were minor, the phenalkamine crosslinkers resulted in a stronger decrease in activation energy. For cured epoxy resins, the glass transition temperature was determined as an intrinsic parameter that was further related to the mechanical coating performance. Considerable effects of the diluents on coating properties were investigated, mostly showing a reduction in abrasive wear for trifunctional diluents in parallel with the variations in hardness and ductility. The high hydrophobicity for coatings with diluents remained after wear and provided good protection. In conclusion, the coating performance could be related to the intrinsic mechanical properties independently of the fossil- or bio-based origin of diluents and crosslinkers, while additional lubricating properties are presented for vegetable oil diluents.