Cargando…
Impedance Variation in a Coaxial Coil Encircling a Metal Tube Adapter
The impedance change in an induction coil surrounding a metal tube adapter is investigated using the truncated region eigenfunction expansion (TREE) method. The conventional TREE method is inapplicable to this problem as a consequence of the numerical overflow of the eigenfunctions of the air–metal...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10574939/ https://www.ncbi.nlm.nih.gov/pubmed/37837132 http://dx.doi.org/10.3390/s23198302 |
Sumario: | The impedance change in an induction coil surrounding a metal tube adapter is investigated using the truncated region eigenfunction expansion (TREE) method. The conventional TREE method is inapplicable to this problem as a consequence of the numerical overflow of the eigenfunctions of the air–metal multi-subdomain regions. The difficulty is surmounted by a normalization procedure for the numerical eigenfunctions obtained from the 1D finite element method (FEM). An efficient algorithm is devised by the Clenshaw–Curtis quadrature rule for integrals involving the numerical eigenfunctions. The numerical results of the TREE and FEM simulation coincide very well in all cases, and the efficiency of the proposed method is also confirmed. |
---|