Cargando…
Learning-Based Seismic Velocity Inversion with Synthetic and Field Data
Building accurate acoustic subsurface velocity models is essential for successful industrial exploration projects. Traditional inversion methods from field-recorded seismograms struggle in regions with complex geology. While deep learning (DL) presents a promising alternative, its robustness using f...
Autores principales: | Farris, Stuart, Clapp, Robert, Araya-Polo, Mauricio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10574958/ https://www.ncbi.nlm.nih.gov/pubmed/37837108 http://dx.doi.org/10.3390/s23198277 |
Ejemplares similares
-
Encoder–Decoder Architecture for 3D Seismic Inversion
por: Gelboim, Maayan, et al.
Publicado: (2022) -
The moment method for the seismic inverse problem
por: Botelho, L C L
Publicado: (1996) -
Seeking Repeating Anthropogenic Seismic Sources: Implications for Seismic Velocity Monitoring at Fault Zones
por: Sheng, Y., et al.
Publicado: (2022) -
Relative seismic velocity variations correlate with deformation at Kīlauea volcano
por: Donaldson, Clare, et al.
Publicado: (2017) -
Tsallis Entropy, Likelihood, and the Robust Seismic Inversion
por: de Lima, Igo Pedro, et al.
Publicado: (2020)