Cargando…
Infrared Thermography for Real-Time Assessment of the Effectiveness of Scoliosis Braces
This work proposes an innovative method, based on the use of low-cost infrared thermography (IRT) instrumentation, to assess in real time the effectiveness of scoliosis braces. Establishing the effectiveness of scoliosis braces means deciding whether the pressure exerted by the brace on the patient’...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10574976/ https://www.ncbi.nlm.nih.gov/pubmed/37836867 http://dx.doi.org/10.3390/s23198037 |
_version_ | 1785120815452258304 |
---|---|
author | Angrisani, Leopoldo De Benedetto, Egidio Duraccio, Luigi Lo Regio, Fabrizio Ruggiero, Roberto Tedesco, Annarita |
author_facet | Angrisani, Leopoldo De Benedetto, Egidio Duraccio, Luigi Lo Regio, Fabrizio Ruggiero, Roberto Tedesco, Annarita |
author_sort | Angrisani, Leopoldo |
collection | PubMed |
description | This work proposes an innovative method, based on the use of low-cost infrared thermography (IRT) instrumentation, to assess in real time the effectiveness of scoliosis braces. Establishing the effectiveness of scoliosis braces means deciding whether the pressure exerted by the brace on the patient’s back is adequate for the intended therapeutic purpose. Traditionally, the evaluation of brace effectiveness relies on empirical, qualitative assessments carried out by orthopedists during routine follow-up examinations. Hence, it heavily depends on the expertise of the orthopedists involved. In the state of the art, the only objective methods used to confirm orthopedists’ opinions are based on the evaluation of how scoliosis progresses over time, often exposing people to ionizing radiation. To address these limitations, the method proposed in this work aims to provide a real-time, objective assessment of the effectiveness of scoliosis braces in a non-harmful way. This is achieved by exploiting the thermoelastic effect and correlating temperature changes on the patient’s back with the mechanical pressure exerted by the braces. A system based on this method is implemented and then validated through an experimental study on 21 patients conducted at an accredited orthopedic center. The experimental results demonstrate a classification accuracy slightly below 70% in discriminating between adequate and inadequate pressure, which is an encouraging result for further advancement in view of the clinical use of such systems in orthopedic centers. |
format | Online Article Text |
id | pubmed-10574976 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-105749762023-10-14 Infrared Thermography for Real-Time Assessment of the Effectiveness of Scoliosis Braces Angrisani, Leopoldo De Benedetto, Egidio Duraccio, Luigi Lo Regio, Fabrizio Ruggiero, Roberto Tedesco, Annarita Sensors (Basel) Article This work proposes an innovative method, based on the use of low-cost infrared thermography (IRT) instrumentation, to assess in real time the effectiveness of scoliosis braces. Establishing the effectiveness of scoliosis braces means deciding whether the pressure exerted by the brace on the patient’s back is adequate for the intended therapeutic purpose. Traditionally, the evaluation of brace effectiveness relies on empirical, qualitative assessments carried out by orthopedists during routine follow-up examinations. Hence, it heavily depends on the expertise of the orthopedists involved. In the state of the art, the only objective methods used to confirm orthopedists’ opinions are based on the evaluation of how scoliosis progresses over time, often exposing people to ionizing radiation. To address these limitations, the method proposed in this work aims to provide a real-time, objective assessment of the effectiveness of scoliosis braces in a non-harmful way. This is achieved by exploiting the thermoelastic effect and correlating temperature changes on the patient’s back with the mechanical pressure exerted by the braces. A system based on this method is implemented and then validated through an experimental study on 21 patients conducted at an accredited orthopedic center. The experimental results demonstrate a classification accuracy slightly below 70% in discriminating between adequate and inadequate pressure, which is an encouraging result for further advancement in view of the clinical use of such systems in orthopedic centers. MDPI 2023-09-22 /pmc/articles/PMC10574976/ /pubmed/37836867 http://dx.doi.org/10.3390/s23198037 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Angrisani, Leopoldo De Benedetto, Egidio Duraccio, Luigi Lo Regio, Fabrizio Ruggiero, Roberto Tedesco, Annarita Infrared Thermography for Real-Time Assessment of the Effectiveness of Scoliosis Braces |
title | Infrared Thermography for Real-Time Assessment of the Effectiveness of Scoliosis Braces |
title_full | Infrared Thermography for Real-Time Assessment of the Effectiveness of Scoliosis Braces |
title_fullStr | Infrared Thermography for Real-Time Assessment of the Effectiveness of Scoliosis Braces |
title_full_unstemmed | Infrared Thermography for Real-Time Assessment of the Effectiveness of Scoliosis Braces |
title_short | Infrared Thermography for Real-Time Assessment of the Effectiveness of Scoliosis Braces |
title_sort | infrared thermography for real-time assessment of the effectiveness of scoliosis braces |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10574976/ https://www.ncbi.nlm.nih.gov/pubmed/37836867 http://dx.doi.org/10.3390/s23198037 |
work_keys_str_mv | AT angrisanileopoldo infraredthermographyforrealtimeassessmentoftheeffectivenessofscoliosisbraces AT debenedettoegidio infraredthermographyforrealtimeassessmentoftheeffectivenessofscoliosisbraces AT duraccioluigi infraredthermographyforrealtimeassessmentoftheeffectivenessofscoliosisbraces AT loregiofabrizio infraredthermographyforrealtimeassessmentoftheeffectivenessofscoliosisbraces AT ruggieroroberto infraredthermographyforrealtimeassessmentoftheeffectivenessofscoliosisbraces AT tedescoannarita infraredthermographyforrealtimeassessmentoftheeffectivenessofscoliosisbraces |