Cargando…
Towards Building a Trustworthy Deep Learning Framework for Medical Image Analysis
Computer vision and deep learning have the potential to improve medical artificial intelligence (AI) by assisting in diagnosis, prediction, and prognosis. However, the application of deep learning to medical image analysis is challenging due to limited data availability and imbalanced data. While mo...
Autores principales: | Ma, Kai, He, Siyuan, Sinha, Grant, Ebadi, Ashkan, Florea, Adrian, Tremblay, Stéphane, Wong, Alexander, Xi, Pengcheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10574977/ https://www.ncbi.nlm.nih.gov/pubmed/37836952 http://dx.doi.org/10.3390/s23198122 |
Ejemplares similares
-
COVID-Net USPro: An Explainable Few-Shot Deep Prototypical Network for COVID-19 Screening Using Point-of-Care Ultrasound
por: Song, Jessy, et al.
Publicado: (2023) -
Understanding the temporal evolution of COVID-19 research through machine learning and natural language processing
por: Ebadi, Ashkan, et al.
Publicado: (2020) -
Trustworthy cyber-physical systems: a systematic framework towards design and evaluation of trust and trustworthiness
por: Gol Mohammadi, Nazila
Publicado: (2019) -
Building trustworthy digital repositories: theory and implementation
por: Bantin, Philip C
Publicado: (2016) -
Towards Trustworthy AI in Dentistry
por: Ma, J., et al.
Publicado: (2022)