Cargando…
Data-Driven Network Analysis for Anomaly Traffic Detection
Cybersecurity is a critical issue in today’s internet world. Classical security systems, such as firewalls based on signature detection, cannot detect today’s sophisticated zero-day attacks. Machine learning (ML) based solutions are more attractive for their capabilities of detecting anomaly traffic...
Autores principales: | Alam, Shumon, Alam, Yasin, Cui, Suxia, Akujuobi, Cajetan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10574999/ https://www.ncbi.nlm.nih.gov/pubmed/37837004 http://dx.doi.org/10.3390/s23198174 |
Ejemplares similares
-
Traffic anomaly detection
por: Cuadra-Sánchez, Antonio, et al.
Publicado: (2015) -
SecIoTComm: An Actor-Based Model and Framework for Secure IoT Communication
por: Eze, Kelechi, et al.
Publicado: (2022) -
Anomaly Detection Module for Network Traffic Monitoring in Public Institutions
por: Wawrowski, Łukasz, et al.
Publicado: (2023) -
A Software Deep Packet Inspection System for Network Traffic Analysis and Anomaly Detection
por: Song, Wenguang, et al.
Publicado: (2020) -
Temporal Data-Driven Sleep Scheduling and Spatial Data-Driven Anomaly Detection for Clustered Wireless Sensor Networks
por: Li, Gang, et al.
Publicado: (2016)