Cargando…

Ecotoxicity of Caffeine as a Bio-Protective Component of Flax-Fiber-Reinforced Epoxy-Composite Building Material

Caffeine is a verified bio-protective substance in the fight against the biodegradation of cellulose materials, but its ecotoxicity in this context has not yet been studied. For this reason, the ecotoxicity of flax-fiber-reinforced epoxy composite with or without caffeine was tested in the present s...

Descripción completa

Detalles Bibliográficos
Autores principales: Kobetičová, Klára, Nábělková, Jana, Brejcha, Viktor, Böhm, Martin, Jerman, Miloš, Brich, Jiří, Černý, Robert
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10575024/
https://www.ncbi.nlm.nih.gov/pubmed/37835952
http://dx.doi.org/10.3390/polym15193901
Descripción
Sumario:Caffeine is a verified bio-protective substance in the fight against the biodegradation of cellulose materials, but its ecotoxicity in this context has not yet been studied. For this reason, the ecotoxicity of flax-fiber-reinforced epoxy composite with or without caffeine was tested in the present study. Prepared samples of the composite material were tested on freshwater green algal species (Hematococcus pluvialis), yeasts (Saccharomyces cerevisae), and crustacean species (Daphnia magna). Aqueous eluates were prepared from the studied material (with caffeine addition (12%) and without caffeine and pure flax fibers), which were subjected to chemical analysis for the residues of caffeine or metals. The results indicate the presence of caffeine up to 0.001 mg/L. The eluate of the studied material was fully toxic for daphnids and partially for algae and yeasts, but the presence of caffeine did not increase its toxicity statistically significantly, in all cases. The final negative biological effects were probably caused by the mix of heavy metal residues and organic substances based on epoxy resins released directly from the tested composite material.