Cargando…
A Deep Learning Model for Correlation Analysis between Electroencephalography Signal and Speech Stimuli
In recent years, the use of electroencephalography (EEG) has grown as a tool for diagnostic and brain function monitoring, being a simple and non-invasive method compared with other procedures like histological sampling. Typically, in order to extract functional brain responses from EEG signals, pro...
Autores principales: | Alessandrini, Michele, Falaschetti, Laura, Biagetti, Giorgio, Crippa, Paolo, Luzzi, Simona, Turchetti, Claudio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10575037/ https://www.ncbi.nlm.nih.gov/pubmed/37836869 http://dx.doi.org/10.3390/s23198039 |
Ejemplares similares
-
EEG-Based Alzheimer’s Disease Recognition Using Robust-PCA and LSTM Recurrent Neural Network
por: Alessandrini, Michele, et al.
Publicado: (2022) -
Classifier Level Fusion of Accelerometer and sEMG Signals for Automatic Fitness Activity Diarization
por: Biagetti, Giorgio, et al.
Publicado: (2018) -
Human activity monitoring system based on wearable sEMG and accelerometer wireless sensor nodes
por: Biagetti, Giorgio, et al.
Publicado: (2018) -
Energy and Performance Analysis of Lossless Compression Algorithms for Wireless EMG Sensors
por: Biagetti, Giorgio, et al.
Publicado: (2021) -
Dataset from PPG wireless sensor for activity monitoring
por: Biagetti, Giorgio, et al.
Publicado: (2019)