Cargando…

Sustainable Strategies for Synthesizing Lignin-Incorporated Bio-Based Waterborne Polyurethane with Tunable Characteristics

In this study, we introduce a novel approach for synthesizing lignin-incorporated castor-oil-based cationic waterborne polyurethane (CWPU-LX), diverging significantly from conventional waterborne polyurethane dispersion synthesis methods. Our innovative method efficiently reduces the required solven...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Bo Min, Choi, Jin Sil, Jang, Sunjin, Park, Hyeji, Lee, Seung Yeol, Jung, Joonhoo, Park, Jaehyeung
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10575038/
https://www.ncbi.nlm.nih.gov/pubmed/37836038
http://dx.doi.org/10.3390/polym15193987
Descripción
Sumario:In this study, we introduce a novel approach for synthesizing lignin-incorporated castor-oil-based cationic waterborne polyurethane (CWPU-LX), diverging significantly from conventional waterborne polyurethane dispersion synthesis methods. Our innovative method efficiently reduces the required solvent quantity for CWPU-LX synthesis to approximately 50% of that employed in traditional WBPU experimental procedures. By incorporating lignin into the polyurethane matrix using this efficient and reduced-solvent method, CWPU-LX demonstrates enhanced properties, rendering it a promising material for diverse applications. Dynamic interactions between lignin and polyurethane molecules contribute to improved mechanical properties, enhanced thermal stability, and increased solvent resistance. Dynamic interactions between lignin and polyurethane molecules contribute to improved tensile strength, up to 250% compared to CWPU samples. Furthermore, the inclusion of lignin enhanced thermal stability, showcasing a 4.6% increase in thermal decomposition temperature compared to conventional samples and increased solvent resistance to ethanol. Moreover, CWPU-LX exhibits desirable characteristics such as protection against ultraviolet light and antibacterial properties. These unique properties can be attributed to the presence of the polyphenolic group and the three-dimensional structure of lignin, further highlighting the versatility and potential of this material in various application domains. The integration of lignin, a renewable and abundant resource, into CWPU-LX exemplifies the commitment to environmentally conscious practices and underscores the significance of greener materials in achieving a more sustainable future.