Cargando…

A Simple Approach to Determine Single-Receiver Differential Code Bias Using Precise Point Positioning

In this study, a precise single-receiver differential code bias (DCB) estimation method using the precise point positioning (PPP) model is presented. The first step is to extract the high-precision ionospheric observations, including DCBs, based on the PPP model. Then, the satellite DCBs are correct...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Fenkai, Tang, Long, Li, Jiaxing, Du, Xiangfeng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10575068/
https://www.ncbi.nlm.nih.gov/pubmed/37837059
http://dx.doi.org/10.3390/s23198230
Descripción
Sumario:In this study, a precise single-receiver differential code bias (DCB) estimation method using the precise point positioning (PPP) model is presented. The first step is to extract the high-precision ionospheric observations, including DCBs, based on the PPP model. Then, the satellite DCBs are corrected using International GNSS Service (IGS) products. Lastly, the algorithm for the minimization of the standard deviation of vertical total electron content (VTECmstd) is employed to determine the value of receiver DCB. To check the method, GNSS data from more than 200 IGS stations around the globe on four days with various geomagnetic and solar activity circumstances are processed. The receiver DCBs are compared to those obtained using previous carried-to-code level (CCL) models. The experimental results show that, compared to the CCL model, the values of VTECmstd for most stations are significantly reduced, the mean number of stations with negative ionospheric measurements is reduced by 40% after correcting the receiver DCBs, and the mean error of estimated receiver DCBs is reduced by approximately 0.6 ns using the PPP model. These results suggest that this method can provide more high-precision receiver DCB estimation.