Cargando…
Spatial and Channel Aggregation Network for Lightweight Image Super-Resolution
Advanced deep learning-based Single Image Super-Resolution (SISR) techniques are designed to restore high-frequency image details and enhance imaging resolution through the use of rapid and lightweight network architectures. Existing SISR methodologies face the challenge of striking a balance betwee...
Autores principales: | Wu, Xianyu, Zuo, Linze, Huang, Feng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10575088/ https://www.ncbi.nlm.nih.gov/pubmed/37837043 http://dx.doi.org/10.3390/s23198213 |
Ejemplares similares
-
Lightweight Single Image Super-Resolution with Selective Channel Processing Network
por: Zhu, Hongyu, et al.
Publicado: (2022) -
Reparameterizable Multibranch Bottleneck Network for Lightweight Image Super-Resolution
por: Shen, Ying, et al.
Publicado: (2023) -
Enhanced Single Image Super Resolution Method Using Lightweight Multi-Scale Channel Dense Network
por: Lee, Yooho, et al.
Publicado: (2021) -
Lightweight Multi-Scale Asymmetric Attention Network for Image Super-Resolution
por: Zhang, Min, et al.
Publicado: (2021) -
Context-aware lightweight remote-sensing image super-resolution network
por: Peng, Guangwen, et al.
Publicado: (2023)