Cargando…
Enhancing Wearable Gait Monitoring Systems: Identifying Optimal Kinematic Inputs in Typical Adolescents
Machine learning-based gait systems facilitate the real-time control of gait assistive technologies in neurological conditions. Improving such systems needs the identification of kinematic signals from inertial measurement unit wearables (IMUs) that are robust across different walking conditions wit...
Autores principales: | Kahlon, Amanrai Singh, Verma, Khushboo, Sage, Alexander, Lee, Samuel C. K., Behboodi, Ahad |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10575151/ https://www.ncbi.nlm.nih.gov/pubmed/37837105 http://dx.doi.org/10.3390/s23198275 |
Ejemplares similares
-
An Evaluation of Three Kinematic Methods for Gait Event Detection Compared to the Kinetic-Based ‘Gold Standard’
por: Zahradka, Nicole, et al.
Publicado: (2020) -
Case report: The gait deviation index may predict neurotherapeutic effects of FES-assisted gait training in children with cerebral palsy
por: Behboodi, Ahad, et al.
Publicado: (2023) -
Gait Kinematic Analysis in Water Using Wearable Inertial Magnetic Sensors
por: Fantozzi, Silvia, et al.
Publicado: (2015) -
Parkinson’s Disease Wearable Gait Analysis: Kinematic and Dynamic Markers for Diagnosis
por: di Biase, Lazzaro, et al.
Publicado: (2022) -
Real-Time Detection of Seven Phases of Gait in Children with Cerebral Palsy Using Two Gyroscopes
por: Behboodi, Ahad, et al.
Publicado: (2019)