Cargando…
A High-Generalizability Machine Learning Framework for Analyzing the Homogenized Properties of Short Fiber-Reinforced Polymer Composites
This study aims to develop a high-generalizability machine learning framework for predicting the homogenized mechanical properties of short fiber-reinforced polymer composites. The ensemble machine learning model (EML) employs a stacking algorithm using three base models of Extra Trees (ET), eXtreme...
Autores principales: | Zhao, Yunmei, Chen, Zhenyue, Jian, Xiaobin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10575166/ https://www.ncbi.nlm.nih.gov/pubmed/37836011 http://dx.doi.org/10.3390/polym15193962 |
Ejemplares similares
-
Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications
por: Rajak, Dipen Kumar, et al.
Publicado: (2019) -
Creep Response of Carbon-Fiber-Reinforced Composite Using Homogenization Method
por: Katouzian, Mostafa, et al.
Publicado: (2021) -
On Complexities of Impact Simulation of Fiber Reinforced Polymer Composites: A Simplified Modeling Framework
por: Alemi-Ardakani, M., et al.
Publicado: (2014) -
Development of scalable and generalizable machine learned force field for polymers
por: Mohanty, Shaswat, et al.
Publicado: (2023) -
Experimental data on the properties of natural fiber particle reinforced polymer composite material
por: Chandramohan, D., et al.
Publicado: (2017)