Cargando…
Viewpoint-Agnostic Taekwondo Action Recognition Using Synthesized Two-Dimensional Skeletal Datasets
Issues of fairness and consistency in Taekwondo poomsae evaluation have often occurred due to the lack of an objective evaluation method. This study proposes a three-dimensional (3D) convolutional neural network–based action recognition model for an objective evaluation of Taekwondo poomsae. The mod...
Autores principales: | Luo, Chenglong, Kim, Sung-Woo, Park, Hun-Young, Lim, Kiwon, Jung, Hoeryong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10575175/ https://www.ncbi.nlm.nih.gov/pubmed/37836879 http://dx.doi.org/10.3390/s23198049 |
Ejemplares similares
-
TUHAD: Taekwondo Unit Technique Human Action Dataset with Key Frame-Based CNN Action Recognition
por: Lee, Jinkue, et al.
Publicado: (2020) -
Comparison of energy consumption and excess post-exercise oxygen consumption according to Taekwondo Taegeuk Poomsae performance in Taekwondo players
por: Jung, Won-Sang, et al.
Publicado: (2023) -
Development of Functional Fitness Prediction Equation in Korean Older Adults: The National Fitness Award 2015–2019
por: Kim, Sung-Woo, et al.
Publicado: (2022) -
Estimation of Health-Related Physical Fitness Using Multiple Linear Regression in Korean Adults: National Fitness Award 2015–2019
por: Kim, Sung-Woo, et al.
Publicado: (2021) -
Estimation of Health-Related Physical Fitness (HRPF) Levels of the General Public Using Artificial Neural Network with the National Fitness Award (NFA) Datasets
por: Lee, Seung-Hun, et al.
Publicado: (2021)