Cargando…
A Comparative Analysis of Deep Learning Convolutional Neural Network Architectures for Fault Diagnosis of Broken Rotor Bars in Induction Motors
Induction machines (IMs) play a critical role in various industrial processes but are susceptible to degenerative failures, such as broken rotor bars. Effective diagnostic techniques are essential in addressing these issues. In this study, we propose the utilization of convolutional neural networks...
Autores principales: | Barrera-Llanga, Kevin, Burriel-Valencia, Jordi, Sapena-Bañó, Ángel, Martínez-Román, Javier |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10575177/ https://www.ncbi.nlm.nih.gov/pubmed/37837026 http://dx.doi.org/10.3390/s23198196 |
Ejemplares similares
-
Treatment Strategy Research on a Squirrel-Cage Induction Motor with Broken Rotor Bar Faults
por: Wu, Yucai, et al.
Publicado: (2022) -
An experimental method for diagnostic of incipient broken rotor bar fault in induction machines
por: Sabir, Hamza, et al.
Publicado: (2022) -
Broken Rotor Bar Detection in Induction Motors through Contrast Estimation
por: Ferrucho-Alvarez, Edna Rocio, et al.
Publicado: (2021) -
Fault Diagnosis in the Slip–Frequency Plane of Induction Machines Working in Time-Varying Conditions
por: Puche-Panadero, Ruben, et al.
Publicado: (2020) -
Cost-Effective Reduced Envelope of the Stator Current via Synchronous Sampling for the Diagnosis of Rotor Asymmetries in Induction Machines Working at Very Low Slip
por: Burriel-Valencia, Jordi, et al.
Publicado: (2019)