Cargando…

Multi-Scale Attention Feature Enhancement Network for Single Image Dehazing

Aiming to solve the problem of color distortion and loss of detail information in most dehazing algorithms, an end-to-end image dehazing network based on multi-scale feature enhancement is proposed. Firstly, the feature extraction enhancement module is used to capture the detailed information of haz...

Descripción completa

Detalles Bibliográficos
Autores principales: Dong, Weida, Wang, Chunyan, Sun, Hao, Teng, Yunjie, Xu, Xiping
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10575182/
https://www.ncbi.nlm.nih.gov/pubmed/37836932
http://dx.doi.org/10.3390/s23198102
Descripción
Sumario:Aiming to solve the problem of color distortion and loss of detail information in most dehazing algorithms, an end-to-end image dehazing network based on multi-scale feature enhancement is proposed. Firstly, the feature extraction enhancement module is used to capture the detailed information of hazy images and expand the receptive field. Secondly, the channel attention mechanism and pixel attention mechanism of the feature fusion enhancement module are used to dynamically adjust the weights of different channels and pixels. Thirdly, the context enhancement module is used to enhance the context semantic information, suppress redundant information, and obtain the haze density image with higher detail. Finally, our method removes haze, preserves image color, and ensures image details. The proposed method achieved a PSNR score of 33.74, SSIM scores of 0.9843 and LPIPS distance of 0.0040 on the SOTS-outdoor dataset. Compared with representative dehazing methods, it demonstrates better dehazing performance and proves the advantages of the proposed method on synthetic hazy images. Combined with dehazing experiments on real hazy images, the results show that our method can effectively improve dehazing performance while preserving more image details and achieving color fidelity.