Cargando…
Recent Advances in UV-Cured Encapsulation for Stable and Durable Perovskite Solar Cell Devices
The stability and durability of perovskite solar cells (PSCs) are two main challenges retarding their industrial commercialization. The encapsulation of PSCs is a critical process that improves the stability of PSC devices for practical applications, and intrinsic stability improvement relies on mat...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10575197/ https://www.ncbi.nlm.nih.gov/pubmed/37835960 http://dx.doi.org/10.3390/polym15193911 |
Sumario: | The stability and durability of perovskite solar cells (PSCs) are two main challenges retarding their industrial commercialization. The encapsulation of PSCs is a critical process that improves the stability of PSC devices for practical applications, and intrinsic stability improvement relies on materials optimization. Among all encapsulation materials, UV-curable resins are promising materials for PSC encapsulation due to their short curing time, low shrinkage, and good adhesion to various substrates. In this review, the requirements for PSC encapsulation materials and the advantages of UV-curable resins are firstly critically assessed based on a discussion of the PSC degradation mechanism. Recent advances in improving the encapsulation performance are reviewed from the perspectives of molecular modification, encapsulation materials, and corresponding architecture design while highlighting excellent representative works. Finally, the concluding remarks summarize promising research directions and remaining challenges for the use of UV-curable resins in encapsulation. Potential solutions to current challenges are proposed to inspire future work devoted to transitioning PSCs from the lab to practical application. |
---|