Cargando…
Classifying Tremor Dominant and Postural Instability and Gait Difficulty Subtypes of Parkinson’s Disease from Full-Body Kinematics
Characterizing motor subtypes of Parkinson’s disease (PD) is an important aspect of clinical care that is useful for prognosis and medical management. Although all PD cases involve the loss of dopaminergic neurons in the brain, individual cases may present with different combinations of motor signs,...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10575216/ https://www.ncbi.nlm.nih.gov/pubmed/37837160 http://dx.doi.org/10.3390/s23198330 |
_version_ | 1785120873654517760 |
---|---|
author | Gong, N. Jabin Clifford, Gari D. Esper, Christine D. Factor, Stewart A. McKay, J. Lucas Kwon, Hyeokhyen |
author_facet | Gong, N. Jabin Clifford, Gari D. Esper, Christine D. Factor, Stewart A. McKay, J. Lucas Kwon, Hyeokhyen |
author_sort | Gong, N. Jabin |
collection | PubMed |
description | Characterizing motor subtypes of Parkinson’s disease (PD) is an important aspect of clinical care that is useful for prognosis and medical management. Although all PD cases involve the loss of dopaminergic neurons in the brain, individual cases may present with different combinations of motor signs, which may indicate differences in underlying pathology and potential response to treatment. However, the conventional method for distinguishing PD motor subtypes involves resource-intensive physical examination by a movement disorders specialist. Moreover, the standardized rating scales for PD rely on subjective observation, which requires specialized training and unavoidable inter-rater variability. In this work, we propose a system that uses machine learning models to automatically and objectively identify some PD motor subtypes, specifically Tremor-Dominant (TD) and Postural Instability and Gait Difficulty (PIGD), from 3D kinematic data recorded during walking tasks for patients with PD (MDS-UPDRS-III Score, 34.7 ± 10.5, average disease duration 7.5 ± 4.5 years). This study demonstrates a machine learning model utilizing kinematic data that identifies PD motor subtypes with a 79.6% F1 score (N = 55 patients with parkinsonism). This significantly outperformed a comparison model using classification based on gait features (19.8% F1 score). Variants of our model trained to individual patients achieved a 95.4% F1 score. This analysis revealed that both temporal, spectral, and statistical features from lower body movements are helpful in distinguishing motor subtypes. Automatically assessing PD motor subtypes simply from walking may reduce the time and resources required from specialists, thereby improving patient care for PD treatments. Furthermore, this system can provide objective assessments to track the changes in PD motor subtypes over time to implement and modify appropriate treatment plans for individual patients as needed. |
format | Online Article Text |
id | pubmed-10575216 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-105752162023-10-14 Classifying Tremor Dominant and Postural Instability and Gait Difficulty Subtypes of Parkinson’s Disease from Full-Body Kinematics Gong, N. Jabin Clifford, Gari D. Esper, Christine D. Factor, Stewart A. McKay, J. Lucas Kwon, Hyeokhyen Sensors (Basel) Article Characterizing motor subtypes of Parkinson’s disease (PD) is an important aspect of clinical care that is useful for prognosis and medical management. Although all PD cases involve the loss of dopaminergic neurons in the brain, individual cases may present with different combinations of motor signs, which may indicate differences in underlying pathology and potential response to treatment. However, the conventional method for distinguishing PD motor subtypes involves resource-intensive physical examination by a movement disorders specialist. Moreover, the standardized rating scales for PD rely on subjective observation, which requires specialized training and unavoidable inter-rater variability. In this work, we propose a system that uses machine learning models to automatically and objectively identify some PD motor subtypes, specifically Tremor-Dominant (TD) and Postural Instability and Gait Difficulty (PIGD), from 3D kinematic data recorded during walking tasks for patients with PD (MDS-UPDRS-III Score, 34.7 ± 10.5, average disease duration 7.5 ± 4.5 years). This study demonstrates a machine learning model utilizing kinematic data that identifies PD motor subtypes with a 79.6% F1 score (N = 55 patients with parkinsonism). This significantly outperformed a comparison model using classification based on gait features (19.8% F1 score). Variants of our model trained to individual patients achieved a 95.4% F1 score. This analysis revealed that both temporal, spectral, and statistical features from lower body movements are helpful in distinguishing motor subtypes. Automatically assessing PD motor subtypes simply from walking may reduce the time and resources required from specialists, thereby improving patient care for PD treatments. Furthermore, this system can provide objective assessments to track the changes in PD motor subtypes over time to implement and modify appropriate treatment plans for individual patients as needed. MDPI 2023-10-09 /pmc/articles/PMC10575216/ /pubmed/37837160 http://dx.doi.org/10.3390/s23198330 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Gong, N. Jabin Clifford, Gari D. Esper, Christine D. Factor, Stewart A. McKay, J. Lucas Kwon, Hyeokhyen Classifying Tremor Dominant and Postural Instability and Gait Difficulty Subtypes of Parkinson’s Disease from Full-Body Kinematics |
title | Classifying Tremor Dominant and Postural Instability and Gait Difficulty Subtypes of Parkinson’s Disease from Full-Body Kinematics |
title_full | Classifying Tremor Dominant and Postural Instability and Gait Difficulty Subtypes of Parkinson’s Disease from Full-Body Kinematics |
title_fullStr | Classifying Tremor Dominant and Postural Instability and Gait Difficulty Subtypes of Parkinson’s Disease from Full-Body Kinematics |
title_full_unstemmed | Classifying Tremor Dominant and Postural Instability and Gait Difficulty Subtypes of Parkinson’s Disease from Full-Body Kinematics |
title_short | Classifying Tremor Dominant and Postural Instability and Gait Difficulty Subtypes of Parkinson’s Disease from Full-Body Kinematics |
title_sort | classifying tremor dominant and postural instability and gait difficulty subtypes of parkinson’s disease from full-body kinematics |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10575216/ https://www.ncbi.nlm.nih.gov/pubmed/37837160 http://dx.doi.org/10.3390/s23198330 |
work_keys_str_mv | AT gongnjabin classifyingtremordominantandposturalinstabilityandgaitdifficultysubtypesofparkinsonsdiseasefromfullbodykinematics AT cliffordgarid classifyingtremordominantandposturalinstabilityandgaitdifficultysubtypesofparkinsonsdiseasefromfullbodykinematics AT esperchristined classifyingtremordominantandposturalinstabilityandgaitdifficultysubtypesofparkinsonsdiseasefromfullbodykinematics AT factorstewarta classifyingtremordominantandposturalinstabilityandgaitdifficultysubtypesofparkinsonsdiseasefromfullbodykinematics AT mckayjlucas classifyingtremordominantandposturalinstabilityandgaitdifficultysubtypesofparkinsonsdiseasefromfullbodykinematics AT kwonhyeokhyen classifyingtremordominantandposturalinstabilityandgaitdifficultysubtypesofparkinsonsdiseasefromfullbodykinematics |