Cargando…
Phenotypic Diversity in Domesticated and Wild Timothy Grass, and Closely Related Species for Forage Breeding
Timothy grass (Phleum pratense L.) is one of the most important forage crops in temperate regions. Forage production, however, faces many challenges, and new cultivars adapted to a changing climate are needed. Wild populations and relatives of timothy may serve as valuable genetic resources in the b...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10575225/ https://www.ncbi.nlm.nih.gov/pubmed/37836234 http://dx.doi.org/10.3390/plants12193494 |
Sumario: | Timothy grass (Phleum pratense L.) is one of the most important forage crops in temperate regions. Forage production, however, faces many challenges, and new cultivars adapted to a changing climate are needed. Wild populations and relatives of timothy may serve as valuable genetic resources in the breeding of improved cultivars. The aim of our study is to provide knowledge about the phenotypic diversity in domesticated (cultivars, breeding lines and landraces) and wild timothy and two closely related species, P. nodosum (lowland species) and P. alpinum, (high altitude species) to identify potential genetic resources. A total of 244 accessions of timothy and the two related species were studied for growth (plant height, fresh and dry weight) and plant development (days to stem elongation, days to booting and days to heading) in the field and in a greenhouse. We found a large diversity in development and growth between the three Phleum species, as well as between the accessions within each species. Timothy showed the highest growth, but no significant difference was found between wild accessions and cultivars of timothy in fresh and dry weight. However, these two groups of accessions showed significant differences in plant development, where timothy cultivars as a group reached flowering earlier than the wild accessions. This suggests that there has not been a strong directional selection towards increased yield during the domestication and breeding of timothy; rather, timothy has been changed for other traits such as earlier heading. Principal component analysis and cluster analysis based on all traits revealed distinct clusters. Accessions falling within the same cluster showed similarities in the development and growth rather than the type of accession. The large diversity found in this study shows the potential of using timothy accessions as genetic resources in crosses with existing cultivars. Also, accessions of P. nodosum with favorable traits can be candidates for the domestication of a novel forage crop, and the high-altitude relative P. alpinum may be a source of genes for the development of more cold and stresstolerant cultivars. |
---|