Cargando…
MLAM: Multi-Layer Attention Module for Radar Extrapolation Based on Spatiotemporal Sequence Neural Network
Precipitation nowcasting is mainly achieved by the radar echo extrapolation method. Due to the timing characteristics of radar echo extrapolation, convolutional recurrent neural networks (ConvRNNs) have been used to solve the task. Most ConvRNNs have been proven to perform far better than traditiona...
Autores principales: | Wang, Shengchun, Wang, Tianyang, Wang, Sihong, Fang, Zixiong, Huang, Jingui, Zhou, Zuxi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10575230/ https://www.ncbi.nlm.nih.gov/pubmed/37836895 http://dx.doi.org/10.3390/s23198065 |
Ejemplares similares
-
MLC-LSTM: Exploiting the Spatiotemporal Correlation between Multi-Level Weather Radar Echoes for Echo Sequence Extrapolation
por: Jing, Jinrui, et al.
Publicado: (2019) -
Text Summarization Method Based on Gated Attention Graph Neural Network
por: Huang, Jingui, et al.
Publicado: (2023) -
A method of radar echo extrapolation based on dilated convolution and attention convolution
por: Shen, Xiajiong, et al.
Publicado: (2022) -
Tourism demand forecasting of multi-attractions with spatiotemporal grid: a convolutional block attention module model
por: Sun, Haodong, et al.
Publicado: (2023) -
The Neural Correlates of Visuospatial Perceptual and Oculomotor Extrapolation
por: Tibber, Marc, et al.
Publicado: (2010)