Cargando…
Discovery, Quantitative Recurrence, and Inhibition of Motion-Blur Hysteresis Phenomenon in Visual Tracking Displacement Detection
Motion blur is common in video tracking and detection, and severe motion blur can lead to failure in tracking and detection. In this work, a motion-blur hysteresis phenomenon (MBHP) was discovered, which has an impact on tracking and detection accuracy as well as image annotation. In order to accura...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10575234/ https://www.ncbi.nlm.nih.gov/pubmed/37836856 http://dx.doi.org/10.3390/s23198024 |
_version_ | 1785120877693632512 |
---|---|
author | Shi, Lixiang Tan, Jianping |
author_facet | Shi, Lixiang Tan, Jianping |
author_sort | Shi, Lixiang |
collection | PubMed |
description | Motion blur is common in video tracking and detection, and severe motion blur can lead to failure in tracking and detection. In this work, a motion-blur hysteresis phenomenon (MBHP) was discovered, which has an impact on tracking and detection accuracy as well as image annotation. In order to accurately quantify MBHP, this paper proposes a motion-blur dataset construction method based on a motion-blur operator (MBO) generation method and self-similar object images, and designs APSF, a MBO generation method. The optimized sub-pixel estimation method of the point spread function (SPEPSF) is used to demonstrate the accuracy and robustness of the APSF method, showing the maximum error (ME) of APSF to be smaller than others (reduced by 86%, when motion-blur length > 20, motion-blur angle = 0), and the mean square error (MSE) of APSF to be smaller than others (reduced by 65.67% when motion-blur angle = 0). A fast image matching method based on a fast correlation response coefficient (FAST-PCC) and improved KCF were used with the motion-blur dataset to quantify MBHP. The results show that MBHP exists significantly when the motion blur changes and the error caused by MBHP is close to half of the difference of the motion-blur length between two consecutive frames. A general flow chart of visual tracking displacement detection with error compensation for MBHP was designed, and three methods for calculating compensation values were proposed: compensation values based on inter-frame displacement estimation error, SPEPSF, and no-reference image quality assessment (NR-IQA) indicators. Additionally, the implementation experiments showed that this error can be reduced by more than 96%. |
format | Online Article Text |
id | pubmed-10575234 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-105752342023-10-14 Discovery, Quantitative Recurrence, and Inhibition of Motion-Blur Hysteresis Phenomenon in Visual Tracking Displacement Detection Shi, Lixiang Tan, Jianping Sensors (Basel) Article Motion blur is common in video tracking and detection, and severe motion blur can lead to failure in tracking and detection. In this work, a motion-blur hysteresis phenomenon (MBHP) was discovered, which has an impact on tracking and detection accuracy as well as image annotation. In order to accurately quantify MBHP, this paper proposes a motion-blur dataset construction method based on a motion-blur operator (MBO) generation method and self-similar object images, and designs APSF, a MBO generation method. The optimized sub-pixel estimation method of the point spread function (SPEPSF) is used to demonstrate the accuracy and robustness of the APSF method, showing the maximum error (ME) of APSF to be smaller than others (reduced by 86%, when motion-blur length > 20, motion-blur angle = 0), and the mean square error (MSE) of APSF to be smaller than others (reduced by 65.67% when motion-blur angle = 0). A fast image matching method based on a fast correlation response coefficient (FAST-PCC) and improved KCF were used with the motion-blur dataset to quantify MBHP. The results show that MBHP exists significantly when the motion blur changes and the error caused by MBHP is close to half of the difference of the motion-blur length between two consecutive frames. A general flow chart of visual tracking displacement detection with error compensation for MBHP was designed, and three methods for calculating compensation values were proposed: compensation values based on inter-frame displacement estimation error, SPEPSF, and no-reference image quality assessment (NR-IQA) indicators. Additionally, the implementation experiments showed that this error can be reduced by more than 96%. MDPI 2023-09-22 /pmc/articles/PMC10575234/ /pubmed/37836856 http://dx.doi.org/10.3390/s23198024 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Shi, Lixiang Tan, Jianping Discovery, Quantitative Recurrence, and Inhibition of Motion-Blur Hysteresis Phenomenon in Visual Tracking Displacement Detection |
title | Discovery, Quantitative Recurrence, and Inhibition of Motion-Blur Hysteresis Phenomenon in Visual Tracking Displacement Detection |
title_full | Discovery, Quantitative Recurrence, and Inhibition of Motion-Blur Hysteresis Phenomenon in Visual Tracking Displacement Detection |
title_fullStr | Discovery, Quantitative Recurrence, and Inhibition of Motion-Blur Hysteresis Phenomenon in Visual Tracking Displacement Detection |
title_full_unstemmed | Discovery, Quantitative Recurrence, and Inhibition of Motion-Blur Hysteresis Phenomenon in Visual Tracking Displacement Detection |
title_short | Discovery, Quantitative Recurrence, and Inhibition of Motion-Blur Hysteresis Phenomenon in Visual Tracking Displacement Detection |
title_sort | discovery, quantitative recurrence, and inhibition of motion-blur hysteresis phenomenon in visual tracking displacement detection |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10575234/ https://www.ncbi.nlm.nih.gov/pubmed/37836856 http://dx.doi.org/10.3390/s23198024 |
work_keys_str_mv | AT shilixiang discoveryquantitativerecurrenceandinhibitionofmotionblurhysteresisphenomenoninvisualtrackingdisplacementdetection AT tanjianping discoveryquantitativerecurrenceandinhibitionofmotionblurhysteresisphenomenoninvisualtrackingdisplacementdetection |