Cargando…
Unsupervised Mixture Models on the Edge for Smart Energy Consumption Segmentation with Feature Saliency
Smart meter datasets have recently transitioned from monthly intervals to one-second granularity, yielding invaluable insights for diverse metering functions. Clustering analysis, a fundamental data mining technique, is extensively applied to discern unique energy consumption patterns. However, the...
Autores principales: | Al-Bazzaz, Hussein, Azam, Muhammad, Amayri, Manar, Bouguila, Nizar |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10575252/ https://www.ncbi.nlm.nih.gov/pubmed/37837127 http://dx.doi.org/10.3390/s23198296 |
Ejemplares similares
-
Weakly Supervised Occupancy Prediction Using Training Data Collected via Interactive Learning
por: Bouhamed, Omar, et al.
Publicado: (2022) -
Cross-collection latent Beta-Liouville allocation model training with privacy protection and applications
por: Luo, Zhiwen, et al.
Publicado: (2023) -
Mixture models and applications
por: Bouguila, Nizar, et al.
Publicado: (2019) -
Fuzzy rule based unsupervised approach for gene saliency
por: Verma, Nishchal K, et al.
Publicado: (2009) -
Entropy-Based Variational Scheme with Component Splitting for the Efficient Learning of Gamma Mixtures
por: Bourouis, Sami, et al.
Publicado: (2021)