Cargando…
Identification of Underground Artificial Cavities Based on the Bayesian Convolutional Neural Network
The development of underground artificial cavities plays an important role in the exploitation of urban spatial resources. As the rapidly growing number of underground artificial cavities with different depths and scales increases, the detection and identification of underground artificial cavities...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10575264/ https://www.ncbi.nlm.nih.gov/pubmed/37836999 http://dx.doi.org/10.3390/s23198169 |
_version_ | 1785120884365721600 |
---|---|
author | Xia, Jigen Peng, Ronghua Li, Zhiqiang Li, Junyi He, Yizhuo Li, Gang |
author_facet | Xia, Jigen Peng, Ronghua Li, Zhiqiang Li, Junyi He, Yizhuo Li, Gang |
author_sort | Xia, Jigen |
collection | PubMed |
description | The development of underground artificial cavities plays an important role in the exploitation of urban spatial resources. As the rapidly growing number of underground artificial cavities with different depths and scales increases, the detection and identification of underground artificial cavities has become a key issue in underground engineering studies. Geophysical techniques have been widely used for the construction, management, and maintenance of underground artificial cavities. In this study, we present two identification methods for underground artificial cavities. Apparent resistivity imaging is the most popular technique for quickly identifying underground artificial cavities, using the forward simulation results of a three-dimensional earth model and comparing these with the preset positions of artificial cavities, as demonstrated in the experiment. To further improve the efficiency of underground artificial cavity identification, we developed a fast recognition approach for underground artificial cavities based on the Bayesian convolutional neural network (BCNN). Compared to a traditional convolutional neural network, the performance of the BCNN method was greatly improved in terms of the classification accuracy and efficiency of identifying underground artificial cavities with apparent resistivity image datasets. |
format | Online Article Text |
id | pubmed-10575264 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-105752642023-10-14 Identification of Underground Artificial Cavities Based on the Bayesian Convolutional Neural Network Xia, Jigen Peng, Ronghua Li, Zhiqiang Li, Junyi He, Yizhuo Li, Gang Sensors (Basel) Communication The development of underground artificial cavities plays an important role in the exploitation of urban spatial resources. As the rapidly growing number of underground artificial cavities with different depths and scales increases, the detection and identification of underground artificial cavities has become a key issue in underground engineering studies. Geophysical techniques have been widely used for the construction, management, and maintenance of underground artificial cavities. In this study, we present two identification methods for underground artificial cavities. Apparent resistivity imaging is the most popular technique for quickly identifying underground artificial cavities, using the forward simulation results of a three-dimensional earth model and comparing these with the preset positions of artificial cavities, as demonstrated in the experiment. To further improve the efficiency of underground artificial cavity identification, we developed a fast recognition approach for underground artificial cavities based on the Bayesian convolutional neural network (BCNN). Compared to a traditional convolutional neural network, the performance of the BCNN method was greatly improved in terms of the classification accuracy and efficiency of identifying underground artificial cavities with apparent resistivity image datasets. MDPI 2023-09-29 /pmc/articles/PMC10575264/ /pubmed/37836999 http://dx.doi.org/10.3390/s23198169 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Communication Xia, Jigen Peng, Ronghua Li, Zhiqiang Li, Junyi He, Yizhuo Li, Gang Identification of Underground Artificial Cavities Based on the Bayesian Convolutional Neural Network |
title | Identification of Underground Artificial Cavities Based on the Bayesian Convolutional Neural Network |
title_full | Identification of Underground Artificial Cavities Based on the Bayesian Convolutional Neural Network |
title_fullStr | Identification of Underground Artificial Cavities Based on the Bayesian Convolutional Neural Network |
title_full_unstemmed | Identification of Underground Artificial Cavities Based on the Bayesian Convolutional Neural Network |
title_short | Identification of Underground Artificial Cavities Based on the Bayesian Convolutional Neural Network |
title_sort | identification of underground artificial cavities based on the bayesian convolutional neural network |
topic | Communication |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10575264/ https://www.ncbi.nlm.nih.gov/pubmed/37836999 http://dx.doi.org/10.3390/s23198169 |
work_keys_str_mv | AT xiajigen identificationofundergroundartificialcavitiesbasedonthebayesianconvolutionalneuralnetwork AT pengronghua identificationofundergroundartificialcavitiesbasedonthebayesianconvolutionalneuralnetwork AT lizhiqiang identificationofundergroundartificialcavitiesbasedonthebayesianconvolutionalneuralnetwork AT lijunyi identificationofundergroundartificialcavitiesbasedonthebayesianconvolutionalneuralnetwork AT heyizhuo identificationofundergroundartificialcavitiesbasedonthebayesianconvolutionalneuralnetwork AT ligang identificationofundergroundartificialcavitiesbasedonthebayesianconvolutionalneuralnetwork |