Cargando…
Measuring and Energizing Sensor System for Digital Signal Monitoring of an Academic–Experimental CubeSat for Wireless Telemetry Purposes
Space technology for small satellites has made significant progress in the academic and industrial fields, and an alternative focused on educational institutions is the CubeSat standard, created to promote various scientific projects of space exploration. In this context, a fundamental module of any...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10575291/ https://www.ncbi.nlm.nih.gov/pubmed/37837128 http://dx.doi.org/10.3390/s23198299 |
_version_ | 1785120890551271424 |
---|---|
author | Garcia-Fernandez, Jose Pablo Hernandez-Gonzalez, Leobardo Ramirez-Hernandez, Jazmin Guevara-Lopez, Pedro Juarez-Sandoval, Oswaldo Ulises Avalos-Arzate, Guillermo |
author_facet | Garcia-Fernandez, Jose Pablo Hernandez-Gonzalez, Leobardo Ramirez-Hernandez, Jazmin Guevara-Lopez, Pedro Juarez-Sandoval, Oswaldo Ulises Avalos-Arzate, Guillermo |
author_sort | Garcia-Fernandez, Jose Pablo |
collection | PubMed |
description | Space technology for small satellites has made significant progress in the academic and industrial fields, and an alternative focused on educational institutions is the CubeSat standard, created to promote various scientific projects of space exploration. In this context, a fundamental module of any satellite is the telemetry subsystem, which controls the communication with the Earth through electronic circuits dedicated to remote communication; also, the measurement and power supply modules are integrated into a CubeSat. Its construction costs range from USD 2500 to 55,000, with suppliers from Europe and the United States. This motivates the development of the present project, aimed at an academic–experimental CubeSat-1U prototype, to limit this technological dependence, focusing on the measurement generated by the acceleration sensors, angular velocity, magnetic fields, barometric pressure, temperature and ultraviolet light intensity, and the energization of each of them. For this, the main objective of the research is to identify the four basic subsystems of the CubeSat-1U: (a) energization subsystem, (b) sensing subsystem, (c) transmission and reception subsystem, and (d) control subsystem. To describe in detail the construction of (a) and (b), a set of diagrams is performed, defining their operation and its interaction. To explain the subsystem’s construction, the components selection and integration are presented. As a result, the electrical measurements generated by the power system, the output of the sensors in laboratory conditions, and images of the developed circuits are presented, having as a contribution to the methodology of design, integration, and development of the four subsystems, the feasibility of construction and its implementation in an academic satellite. |
format | Online Article Text |
id | pubmed-10575291 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-105752912023-10-14 Measuring and Energizing Sensor System for Digital Signal Monitoring of an Academic–Experimental CubeSat for Wireless Telemetry Purposes Garcia-Fernandez, Jose Pablo Hernandez-Gonzalez, Leobardo Ramirez-Hernandez, Jazmin Guevara-Lopez, Pedro Juarez-Sandoval, Oswaldo Ulises Avalos-Arzate, Guillermo Sensors (Basel) Project Report Space technology for small satellites has made significant progress in the academic and industrial fields, and an alternative focused on educational institutions is the CubeSat standard, created to promote various scientific projects of space exploration. In this context, a fundamental module of any satellite is the telemetry subsystem, which controls the communication with the Earth through electronic circuits dedicated to remote communication; also, the measurement and power supply modules are integrated into a CubeSat. Its construction costs range from USD 2500 to 55,000, with suppliers from Europe and the United States. This motivates the development of the present project, aimed at an academic–experimental CubeSat-1U prototype, to limit this technological dependence, focusing on the measurement generated by the acceleration sensors, angular velocity, magnetic fields, barometric pressure, temperature and ultraviolet light intensity, and the energization of each of them. For this, the main objective of the research is to identify the four basic subsystems of the CubeSat-1U: (a) energization subsystem, (b) sensing subsystem, (c) transmission and reception subsystem, and (d) control subsystem. To describe in detail the construction of (a) and (b), a set of diagrams is performed, defining their operation and its interaction. To explain the subsystem’s construction, the components selection and integration are presented. As a result, the electrical measurements generated by the power system, the output of the sensors in laboratory conditions, and images of the developed circuits are presented, having as a contribution to the methodology of design, integration, and development of the four subsystems, the feasibility of construction and its implementation in an academic satellite. MDPI 2023-10-07 /pmc/articles/PMC10575291/ /pubmed/37837128 http://dx.doi.org/10.3390/s23198299 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Project Report Garcia-Fernandez, Jose Pablo Hernandez-Gonzalez, Leobardo Ramirez-Hernandez, Jazmin Guevara-Lopez, Pedro Juarez-Sandoval, Oswaldo Ulises Avalos-Arzate, Guillermo Measuring and Energizing Sensor System for Digital Signal Monitoring of an Academic–Experimental CubeSat for Wireless Telemetry Purposes |
title | Measuring and Energizing Sensor System for Digital Signal Monitoring of an Academic–Experimental CubeSat for Wireless Telemetry Purposes |
title_full | Measuring and Energizing Sensor System for Digital Signal Monitoring of an Academic–Experimental CubeSat for Wireless Telemetry Purposes |
title_fullStr | Measuring and Energizing Sensor System for Digital Signal Monitoring of an Academic–Experimental CubeSat for Wireless Telemetry Purposes |
title_full_unstemmed | Measuring and Energizing Sensor System for Digital Signal Monitoring of an Academic–Experimental CubeSat for Wireless Telemetry Purposes |
title_short | Measuring and Energizing Sensor System for Digital Signal Monitoring of an Academic–Experimental CubeSat for Wireless Telemetry Purposes |
title_sort | measuring and energizing sensor system for digital signal monitoring of an academic–experimental cubesat for wireless telemetry purposes |
topic | Project Report |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10575291/ https://www.ncbi.nlm.nih.gov/pubmed/37837128 http://dx.doi.org/10.3390/s23198299 |
work_keys_str_mv | AT garciafernandezjosepablo measuringandenergizingsensorsystemfordigitalsignalmonitoringofanacademicexperimentalcubesatforwirelesstelemetrypurposes AT hernandezgonzalezleobardo measuringandenergizingsensorsystemfordigitalsignalmonitoringofanacademicexperimentalcubesatforwirelesstelemetrypurposes AT ramirezhernandezjazmin measuringandenergizingsensorsystemfordigitalsignalmonitoringofanacademicexperimentalcubesatforwirelesstelemetrypurposes AT guevaralopezpedro measuringandenergizingsensorsystemfordigitalsignalmonitoringofanacademicexperimentalcubesatforwirelesstelemetrypurposes AT juarezsandovaloswaldoulises measuringandenergizingsensorsystemfordigitalsignalmonitoringofanacademicexperimentalcubesatforwirelesstelemetrypurposes AT avalosarzateguillermo measuringandenergizingsensorsystemfordigitalsignalmonitoringofanacademicexperimentalcubesatforwirelesstelemetrypurposes |