Cargando…
A Novel Feature-Selection Algorithm in IoT Networks for Intrusion Detection
The Internet of Things (IoT) and network-enabled smart devices are crucial to the digitally interconnected society of the present day. However, the increased reliance on IoT devices increases their susceptibility to malicious activities within network traffic, posing significant challenges to cybers...
Autores principales: | Nazir, Anjum, Memon, Zulfiqar, Sadiq, Touseef, Rahman, Hameedur, Khan, Inam Ullah |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10575335/ https://www.ncbi.nlm.nih.gov/pubmed/37836983 http://dx.doi.org/10.3390/s23198153 |
Ejemplares similares
-
An Effective Feature Selection Model Using Hybrid Metaheuristic Algorithms for IoT Intrusion Detection
por: Kareem, Saif S., et al.
Publicado: (2022) -
Examining the Suitability of NetFlow Features in Detecting IoT Network Intrusions
por: Awad, Mohammed, et al.
Publicado: (2022) -
Generating Datasets for Anomaly-Based Intrusion Detection Systems in IoT and Industrial IoT Networks
por: Essop, Ismael, et al.
Publicado: (2021) -
Attentive transformer deep learning algorithm for intrusion detection on IoT systems using automatic Xplainable feature selection
por: Zegarra Rodríguez, Demóstenes, et al.
Publicado: (2023) -
Towards an Explainable Universal Feature Set for IoT Intrusion Detection
por: Alani, Mohammed M., et al.
Publicado: (2022)