Cargando…
A Front-End Circuit for Two-Wire Connected Resistive Sensors with a Wire-Resistance Compensation
In this article, a novel front-end circuit for remote two-wire resistive sensors that is insensitive to the wire resistances is proposed and experimentally characterized. The circuit relies on an OpAmp-based current source with a square-wave excitation, two twin diodes in the feedback path, and a lo...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10575345/ https://www.ncbi.nlm.nih.gov/pubmed/37837058 http://dx.doi.org/10.3390/s23198228 |
Sumario: | In this article, a novel front-end circuit for remote two-wire resistive sensors that is insensitive to the wire resistances is proposed and experimentally characterized. The circuit relies on an OpAmp-based current source with a square-wave excitation, two twin diodes in the feedback path, and a low-pass filter at the output. Using such a circuit topology, the output is a DC voltage proportional to the sensor resistance and independent of the wire resistances. A prototype was built measuring resistances that correspond to a Pt100 thermal sensor and with different values of wire resistance. The experimental results show that the output voltage is almost insensitive to both the wire resistances and their mismatch, with a relative error (with respect to the case with null parasitic resistance) in the range of 0.01–0.03% Full-Scale Span (FSS). In addition, the proposed circuit shows a remarkable linearity (around 0.01% FSS), and again this is independent of the presence and also of the mismatch of the wire resistances. |
---|