Cargando…
Mechanically Tough and Highly Stretchable Hydrogels Based on Polyurethane for Sensitive Strain Sensor
Hydrogels with flexible and stretchable properties are ideal for applications in wearable sensors. However, traditional hydrogel-based sensors suffer from high brittleness and low electrical sensitivity. In this case, to solve this dilemma, a macromolecular polyurethane crosslinking agent (PCA) was...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10575362/ https://www.ncbi.nlm.nih.gov/pubmed/37835950 http://dx.doi.org/10.3390/polym15193902 |
Sumario: | Hydrogels with flexible and stretchable properties are ideal for applications in wearable sensors. However, traditional hydrogel-based sensors suffer from high brittleness and low electrical sensitivity. In this case, to solve this dilemma, a macromolecular polyurethane crosslinking agent (PCA) was designed and prepared; after that, PCA and two-dimensional (2D) MXene nanosheets were both introduced into a covalently crosslinked network to enhance the comprehensive mechanical and electrochemical properties of the hydrogels. The macromolecular polyurethane crosslinking agent promotes high-tensile strength and highly stretchable capacity by suitable covalent crosslinking. The optimized hydrogel, which exhibited maximum tensile strength and maximum elongation at break, had results of 1.21 MPa and 644%, respectively. Two-dimensional MXene nanosheets provide hydrogel with high electrical conductivity and strain sensitivity, producing a wearable device for the continuous monitoring of human movements and facial microexpressions. This study demonstrated an efficient structure design strategy for building mechanically tough, highly stretchable, and sensitive dual-mode MXenes-based wearable sensors. |
---|