Cargando…
RDD-YOLOv5: Road Defect Detection Algorithm with Self-Attention Based on Unmanned Aerial Vehicle Inspection
Road defect detection is a crucial aspect of road maintenance projects, but traditional manual methods are time-consuming, labor-intensive, and lack accuracy. Leveraging deep learning frameworks for object detection offers a promising solution to these challenges. However, the complexity of backgrou...
Autores principales: | Jiang, Yutian, Yan, Haotian, Zhang, Yiru, Wu, Keqiang, Liu, Ruiyuan, Lin, Ciyun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10575368/ https://www.ncbi.nlm.nih.gov/pubmed/37837071 http://dx.doi.org/10.3390/s23198241 |
Ejemplares similares
-
Inspection of Aircraft Wing Panels Using Unmanned Aerial Vehicles †
por: Tzitzilonis, Vasileios, et al.
Publicado: (2019) -
Localization System for Lightweight Unmanned Aerial Vehicles in Inspection Tasks
por: Benjumea, Diego, et al.
Publicado: (2021) -
Handbook of unmanned aerial vehicles
por: Valavanis, Kimon, et al.
Publicado: (2015) -
Guidance of Unmanned Aerial Vehicles
por: Yanushevsky, Rafael
Publicado: (2011) -
An Optimal Routing Algorithm for Unmanned Aerial Vehicles
por: Kim, Sooyeon, et al.
Publicado: (2021)